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Abstract. Context-aware applications and middleware platforms are
evolving into major driving factors for pervasive systems. The ability to
also make accurate assumptions about future contexts further enables
such systems to proactively adapt to upcoming situations. However, the
provision of a reusable system component to facilitate the development of
such future-context-aware applications is still challenging - as it requires
to be generic but, at the same time, as efficient and accurate as possible.
To address these requirements, this paper presents the approach of Struc-
tured Context Prediction which constitutes a framework to facilitate the
application of existing prediction methods. It allows application devel-
opers to integrate domain-specific knowledge by creating a customized
prediction model at design time and to select, implement and combine
prediction methods for the intended purpose. Feasibility is evaluated by
applying a prototype system component to two mobile application sce-
narios, showing that both high accuracy and efficiency are possible.

1 Introduction

The vision of Ubiquitous Computing fosters the development of smart devices
and applications which are able to assist the mobile user while ideally remain-
ing in the background [1]. In consequence, the ability to obtain, to process, to
manage and to provide context information describing the user’s environment
and situation has become one of the most important requirements for such sys-
tems. The prediction of future context is an important further step which enables
devices and applications to also proactively support the user [2].

With the ongoing emergence of generic context management systems and
middleware support (e.g. [3, 4]), application developers are often able to build
context-aware applications on the basis of generic frameworks. Supplementary,
this paper faces the challenge to offer reusable system support for context pre-
diction (in the following referred to as a prediction system) in order to support
the development of context-aware applications which should not only consider
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the current context, but which are also able to derive and use information about
future situations – as e.g. illustrated by the following two use cases:

Example 1 (Energy Management). A mobile device uses predictions about its
future usage for energy management. If e.g. a user often utilizes his mobile phone
in a similar way, the application responsible for energy management can use the
prediction system in order to learn about this behavior. Based on predictions,
it can make advanced recommendations about the optimal time interval for
reloading the battery, save energy in an adjusted way or warn the user in case of
critically intensive usage leading to an upcoming uncovered demand for energy.

Example 2 (Service Availability). In mobile ad-hoc networks, the availability of
a specific software service often depends on context data such as location or
network connections. Thus, service availability can e.g. be predicted by forecast-
ing the position of devices which provide such services and/or of devices which
need to consume them. Predictions about service availability can thus be used
to improve task assignment by always selecting the most “promising” device [4].

However, such a generic applicability imposes several principal requirements
on a prediction system: First, the system should support a preferably wide range
of applications and diversity of exploitable contexts [5, p. 11] in order to max-
imize reusability. Furthermore, there are inter-individual differences between
users [6] which can also change continuously [7, p. 77]. Thus, the system has
to adapt to the individual user at runtime by learning about the characteristics
and regularities which determine the future context (cp. [6] [7, p. 77]).

Besides being generic and adaptive, the prediction system should be able to
produce customized predictions for different scenarios in a reliable and satisfying
way, i.e. as accurate and efficient as possible. Especially mobile devices often
suffer from a lack of resources [8], so that the corresponding requirement for
efficiency makes this trade-off even more challenging. Finally, the core motivation
to support application developers implies a preferably low effort for them. In
summary, the following requirements can be identified:

1. Support for a wide range of applications
2. Support for diverse kinds of context
3. Adaptation to the individual user of the system
4. Accuracy of prediction results
5. Efficiency w.r.t. restricted resources of mobile devices
6. Low effort for application developers

In order to elaborate an approach which fulfills these requirements, the rest
of the paper is organized as follows: Section 2 analyzes major existing approaches
to context prediction and examines hybrid prediction techniques. Section 3 in-
troduces the approach of Structured Context Prediction which partly makes use
of such hybrid techniques while integrating domain-specific knowledge in order
to achieve accuracy and efficiency. The approach is evaluated in Section 4 using
both quantitative evaluation on the basis of Example 2 as well as conceptual
evaluation by means of the requirements identified in this section. Finally, Sec-
tion 5 gives a short summary and an outlook.



2 Background and Related Work

As the basis for every prediction about the future, there must be a sufficient
amount of related data collected in the past. In Example 2, the availability of a
service and the position of the consuming device are parameters to be considered.
Both are called variables in this paper and can have different values at different
points of time (e.g. position = at home and service available = false). Such
values constitute so-called historical data:

Definition 1 (Historical Data). Historical data of variables V1, ..., Vn in a
time interval with discrete points of time j ∈ Z consist of values vi,j for all
variables Vi and all points of time j.

The definition is inspired by time series and stochastic processes as both are
very generic concepts. It is used in combination with stochastics in order to ex-
press uncertainty about future variable values. Furthermore, different methods
may have different types of scales (e.g. nominal or ratio according to statistics).
Finally, variables can also be understood as attributes of entities (e.g. the posi-
tion of the user) establishing the connection to context which is defined by Dey
and Abowd on the basis of entities [9, p.3-4].

Being on the agenda of context-awareness [5, p. 6], histories provide essential
input for prediction. Additionally, this paper takes into account the principle of
inductive learning (cp. [10, p. 60-61]) which is e.g. used in data mining, machine
learning, pattern recognition and statistics. Inductive learning extracts know-
ledge about characteristics and regularities from observed parts of historical data
(training data). This is advantageous because storing or repeated processing of
complete histories are avoided and thus resources of mobile devices are used
more efficiently. The learned knowledge is applied for predictions to infer future
context from current and recent context.

The approaches of Mayrhofer [11], Sigg [7] and Petzold [12] are considered to
be major contributions towards generic context prediction. Mayrhofer’s approach
uses an exchangeable prediction method [11, p. 37]. The approach combines
context prediction with a preceding extraction of context on a high abstraction
level (high-level-context [5], e.g. the complex situation in a meeting) from context
on a low abstraction level (low-level-context [5], e.g. the noise level in the current
room) [11, p. 5, 33, 62]. Context prediction is simplified by this approach because
only few different contexts have to be considered as possible values of only one
variable. Thus, a prediction based on high-level-context permits high efficiency.
However, only predictions about high-level-context are possible, and Sigg states
that such a high-level-context-approach is disadvantageous for accuracy [7, p.
179]. The effort for application developers using Mayrhofer’s approach is low [11,
p. 128]: Almost no knowledge about the application domain is used [11, p. 128],
but its integration is recommended by Mayrhofer as future work [11, p. 132].

Sigg’s approach is nearly fully generic, in particular it is not restricted to the
prediction of high-level-context [7, p. 92]. On the other hand, the simplification
of prediction based on high-level-context is missing. Sigg considers a single pre-
diction method applied at runtime which is exchangeable at design time [7, p.
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Fig. 1. Characteristics of existing approaches compared to Structured Context Predic-
tion (SCP) in view of the requirements identified in Section 1

91], but regardless of the choice of the method, it has to deal with a poten-
tially high number of possible variable/value combinations as well as additional
application- and variable-dependent requirements. Such requirements could in-
volve fast predictions of the values of a specific variable, different scale types or
the utilization of the type of dependencies among variables [11, p. 66] [7, p. 96].
Mayrhofer, Sigg and Petzold state that there is no universal method fulfilling
all possible requirements [11, p. 86, 91] [7, p. 203-204] [12, p. 142]. Thus, it is
expected that there will always be serious limitations considering accuracy and
efficiency for generic context prediction as long as only a single method is used.
The effort for application developers using Sigg’s approach is relatively low [7].

Petzold’s approach is restricted to the prediction of primary context [9], i.e.
time, position, identity and activity [12, p. 141], and is therefore not fully generic.
In addition to the other approaches, it allows a parallel, hybrid application
of multiple methods [12, p. 87] (similarly in [13]). This means that the same
prediction task can be assigned to multiple methods in order to better fulfill
application- and variable-dependent requirements. The advantages of multiple
methods can be combined [12, p. 142], e.g. different specialized methods can
be utilized to address different aspects of the prediction. This allows for high
accuracy and efficiency. On the other hand, the combination of methods leads
to higher effort for application developers who have to select and combine the
methods in order to apply the approach to their individual application domains.

Figure 1 summarizes the main characteristics of the presented approaches
showing that there is still no approach which is generic enough and offers high
accuracy and efficiency at the same time. However, the application of multiple
prediction methods is interesting because it offers the possibility to achieve high
accuracy and efficiency. Also, the integration of domain-specific knowledge has to
be considered because it narrows the prediction task and can simplify achieving
high accuracy and efficiency while remaining generic.

Beyond context, Hilario distinguishes different kinds of techniques for a hy-
brid application of multiple methods [14]. The parallel application of methods
which is used by Petzold is called coprocessing [14]. In contrast, chainprocessing
denotes the sequential application of methods so that the prediction result of
one method is used as input for another method [14]. Both techniques expose



benefits concerning accuracy and efficiency [14, p. 21-22] [15, p. 1-4]. Bayesian
Networks offer the possibility to describe a graph-based dependency structure of
variables (cp. [16, p. 101, 112-114] [17]). However, such a generic graph-structure
is also interesting to describe the connections between methods which take the
output of a method as the input of another method (cp. 3.2).

Several methods could be applied for prediction in a hybrid way (e.g. neu-
ral networks, regression, decision trees, discriminant functions, markov chains,
ARMA and more). However, many of them are not suitable because they require
too many resources to be used on mobile devices or do not support adaptive
online-learning [2, p. 34] [11, p. 66], i.e. are not able to update already learned
knowledge and therefore need an explicit learning phase. The remaining methods
come into consideration for the approach presented in the following section.

3 The Approach of Structured Context Prediction

The approach of Structured Context Prediction (SCP) realizes a generic predic-
tion system. It is based on fundamental principles derived from the preceding
analysis of existing approaches and introduces the new concept of Prediction
Nets and an architecture for a corresponding prediction system.

3.1 Fundamental Principles

In order to overcome the remaining conflict between the requirements of gener-
icness, accuracy and efficiency, the proposed prediction system is based on two
major principles: In contrast to Mayrhofer who prioritizes unobtrusiveness [11, p.
131], the approach of Structured Context Prediction uses knowledge about the
application domain as valuable information which has to be incorporated by the
application developers at design time. It is thereby extending Petzold’s ideas.
The second principle is a hybrid application of multiple, exchangeable predic-
tion methods. Thus, methods which are appropriate to ensure accuracy and
efficiency of domain-specific predictions can be selected and combined by the
application developers respectively.

The knowledge about the application domain is described as a prediction
model which specifies the way predictions have to be performed and configures
the prediction system. Among other things, it assigns a method to each variable
in order to predict its value and interrelates the methods. The method uses
the values of other variables as inputs which are again predicted by their own
methods or are known (e.g. measured by a sensor). Additionally, an adaptation
to the individual user at runtime is achieved by adaptive online-learning as the
default learning mechanism. Figure 2 shows how the preceding principles and
techniques complement one another in order to apply the generic prediction
system to a concrete prediction task.

The integration of domain-specific knowledge can be illustrated by the appli-
cation responsible for the energy management of a mobile phone (Example 1).
The fact that the user is telephoning can be represented as the value of a boolean
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Fig. 2. General methodology of Structured Context Prediction

variable which is predicted by a method using the values of other variables such
as the time of day and the position of the user which are again each predicted
by their variable’s methods. The set of usable methods can be extended by im-
plementing new, possibly application-dependent methods. In consequence, an
implementation of a prediction system according to the presented approach con-
stitutes a framework which can be extended by other methods as "plug-ins". So
far, a reference configuration of methods is established which is mainly based on
linear regression and probability tables. The notion “probability tables” is used to
refer to a method which stores occurrence frequencies of variable/value combina-
tions as knowledge. The properties of the two methods complement one another
and are therefore well suited for hybrid application.

From the perspective of an application developer, the whole procedure of
using the prediction system consists of two parts: The first part is determined
by the development of the prediction model at design time (cp. Section 3.2).
The second part is the retrieval of predictions by the respective application at
runtime (cp. Section 3.3).

3.2 Prediction Nets

As introduced above, the main part of a prediction model specifies how the
methods and respective variables are connected. This part is called Prediction
Net. A Prediction Net specifies that the value of a variable at a specific point of
time is predicted using the values of other variables at the same point of time or
earlier (e.g. the position of a user can be predicted by the preceding positions).

Figure 3 shows a simple example of a Prediction Net which is mainly intended
to predict the energy consumption of a mobile phone (cp. Example 1). The phone
usage at a specific point of time is e.g. predicted by the number of missed calls,
the position and the time of day at the same point of time, and the phone usage
one and two time steps earlier. Prediction Nets are defined formally as follows:

Definition 2 (Prediction Net). A Prediction Net is a finite directed graph
N = (W,E). The node set W is a set of variables {V1, ..., Vn}. An edge Vi

∆→
Vi′ := (Vi, ∆, Vi′) in the edge set E ⊆ W × N0 ×W expresses that the value of
Vi at the point of time j −∆ is used as input for the prediction of the value of
Vi′ at the point of time j. The symbol ∆ denotes a time offset. The notations
Vi → Vi′ := Vi

0→ Vi′ and Vi
1, ..., l−→ Vi′ :=

⋃l
k=1 Vi

k→ Vi′ are allowed as
abbreviations. A Prediction Net contains no cycles of the form Vi

∆1→ ... ∆l→ Vi
with

∑l
k=1∆k = 0.
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Prediction Nets are inspired by Dynamic Bayesian Networks [18] which ex-
plicitly take into account the factor time. The main difference between Bayesian
Networks and Prediction Nets is that Bayesian Networks describe dependencies
between variables, and Prediction Nets describe connections between methods
which are assigned to the variables. Prediction Nets only allow predictions along
the edges of the graph. On the one hand, this makes the design of such a net more
complex, but on the other hand it facilitates the predictions – which is advanta-
geous when taking into account the restricted resources of mobile devices. Thus,
Prediction Nets are not considered to be a prediction method, but are rather
intended as a frame in order to integrate existing methods. It is e.g. possible to
use a probability table for a variable with nominal scale type and at the same
time regression for another variable with ratio scale type in order to handle a
linear dependency in an efficient way with only low storage requirements.

The first step to perform a prediction with a Prediction Net is to generate the
relevant part of the respective unfolded Prediction Net. An unfolded Prediction
Net is a representation of a Prediction Net which represents each variable multi-
ple times, i.e. one variable instance for each point of time. If, e.g., the position of
the user (cp. V3 in Figure 3) should be predicted by the preceding position, the
Prediction Net contains the variable V3 and the edge V3

1→ V3. The unfolded Pre-
diction Net is thus determined as ... → V3,−2 → V3,−1 → V3,0 → V3,1 → V3,2 →
... where ..., -2, -1, 0, 1, 2, ... are points of time (realization of a markov chain).

Prediction Nets are a powerful modeling instrument, e.g. they can be used
for coprocessing as shown in Figure 4 (right side). Here, V5 and V6 are variables
with different methods for the same prediction task. The different results are
integrated by the method of V4 (e.g. by arithmetic mean or majority vote).

3.3 Architecture

Figure 5 shows the architecture proposed by the approach of Structured Context
Prediction for a prediction system which can be used as a reusable component
in context-aware applications. Learning and prediction as concurrent processes
are mapped to different layers. The two layers are linked by the knowledge layer
which constitutes a data layer at the bottom of the architecture. The learning
layer creates and updates knowledge and the prediction layer uses knowledge
for predictions which are performed on demand by default. The architecture
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Fig. 5. Architecture of a prediction system according to the SCP approach

permits that the prediction system is located on another device as the application
itself (e.g. a powerful server offering location-dependent predictions). The data
acquisition can also be performed remotely in order to use sensors of other devices
(e.g. GPS). A further possibility of distribution supported by the architecture is
to share learned knowledge with other devices.

All of the three mentioned layers contain parts of the methods. Each method
possesses its own knowledge (e.g. frequencies of variable values in case of a
probability table) and its algorithms for updating the knowledge and predicting
the value of the variable associated with the method. However, a method does
not have to be aware of the structure of the Prediction Net.

The knowledge layer contains knowledge about relationships, characteristics
and regularities determining the context. The first part of this knowledge is
comprised by the given prediction model which contains the Prediction Net. The
second part contains the instance data which is created and updated by adaptive
online-learning using the specified methods at runtime in order to adapt to the
actual user of the application. In the developed prototype system, the prediction
model is created by the application developers as an XML-representation.

The data acquisition layer is responsible for acquiring context data. It makes
them available by a unique interface and abstracts from the interfaces of physical
or logical sensors (cp. e.g. [3]).

The learning layer operates concurrently and independently from the appli-
cation by default. This means that it periodically obtains relevant context data
from the data acquisition layer and assigns them to the methods as training data.
The methods extract knowledge from the training data by inductive learning.
They have to support adaptive online learning unless it is not desired (e.g. in
case of a user-independent dependency).

The prediction layer makes use of an algorithm which coordinates the meth-
ods. This is necessary, because - unlike learning - the prediction normally cannot



be performed by a single method only. For example, if the phone usage should be
predicted using the Prediction Net in Figure 3, also the position and the number
of missed calls have to be predicted by their respective methods. Accordingly,
a prediction initiated by the application begins with the generation of the rel-
evant part of the unfolded Prediction Net. For each relevant point of time for
every relevant variable, a prediction unit called predictor is created. A predictor
obtains input values from its parent predictors and passes them to the method
associated with its variable in order to predict the required value at the given
point of time. The following algorithm summarizes the prediction of value vi,j
of variable Vi at the point of time j:

if vi,j already predicted then
return vi,j

else
if vi,j known then
return vi,j

else
let parent-predictors predict their values
predict vi,j with own method using these values
return vi,j

end if
end if

The algorithm is executed multiple times in order to capture probabilistic
behavior. This is inspired by an algorithm called Stochastic Simulation which
was originally developed for Bayesian Networks [19, p. 189-191] In a prediction
round, each predictor and its method predict one of the possible values of the
corresponding variable at the corresponding point of time. A value should be
chosen with high probability only if the probability occurring in reality is also
high. The individual prediction results are used to finally obtain a probability
distribution. This can either be a distribution of possible values of the variable
at a specific point of time in the future, or a distribution of possible points of
time in the future when the variable will have a specific value. Additionally to
the number of prediction rounds, an alternative reduced mode without repeated
execution of the algorithm can be chosen. This enables a high scalability in
comparison to more usual algorithms for Bayesian Networks which could be
adapted for Prediction Nets.

4 Evaluation

A prototype of a generic prediction system according to the approach of Struc-
tured Context Prediction has been implemented for the Java Micro EditionTMand
was applied to the two application scenarios motivated in example 1 and 2. In
particular, the framework is used by the existing DEMAC -middleware [4] for the
prediction of service availabilities in order to enhance the distribution of mobile
business processes. The following subsection presents the experiences which have
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Fig. 6. The Prediction Net for example 2 (SA = service availability, IR = integrated
result of coprocessing)

been made with this second scenario and the developed prototype prediction sys-
tem. The section concludes with a general conceptual evaluation and discussion.

4.1 Scenario-Based Evaluation

The first part of the evaluation is based on the prediction of service availabilities
as motivated by example 2 (cp. Section 1). As a first step, an application-specific
prediction model is developed and configured for the prediction of service avail-
abilities for a user’s device which is temporarily connected to different ad-hoc
networks. In consequence, the service availability is assumed to depend on the
total number of devices within these networks as potential service providers,
and, similarly to Figure 3, on the time of day and the position of the consuming
device (e.g. a printer service is available at the location of the user’s company for
the whole day and an ad-hoc file exchange service is temporarily offered by ad-
jacent mobile devices). Thus, these four variables and the dependencies between
them basically constitute the Prediction Net shown in Figure 6.

The mapping of the original four variables of the example to multiple vari-
ables in the net results from the selected prediction methods and the use of
coprocessing. The service availability (SA) at a specific point of time is pre-
dicted by using four methods in parallel. Similarly, the position at a specific
point of time is predicted by using the time of day at this point of time as well
as the position at the preceding point of time (markov chain) and by extrapo-
lating the position. As most of these variables are not numerical, the prediction
model uses probability tables as the main prediction method of the reference
configuration. In addition, also more specialized methods are used (e.g. such as
a method realizing a majority vote and a method for determining the time of
day as a periodic variable). Developing an appropriate prediction model for the
introduced scenario is not trivial because predictions about arbitrary services



with different characteristics have to be supported. Additionally, because of the
resulting network load, service availabilities cannot be measured regularly, so it
is e.g. not possible to predict the availability of a service with a markov chain
using it’s preceding availability.

The example scenario consists of realistic historical data about the behavior
of a user and its mobile device spanning an interval of seven days (Monday-
Sunday). It contains the net size, the time of day, the position and the service
availability as values of the corresponding variables at different points of time,
representing context data measured by real sensors. For the practical experiment,
two services with different behaviors have been chosen: A stationary print service
is regularly available when the user is at work. An ad-hoc file exchange service
is offered spontaneously by few mobile devices carried by other people in the
direct vicinity of the user and is thus only available very unfrequently.

The quantitative evaluation covers accuracy and efficiency. High efficiency
means that the ratio of resource consumption and quality of results is appropri-
ate. The efficiency of the prediction system and of the created prediction model
is determined by measuring the resource consumption and the accuracy of the
prediction results. All results are based on predictions about the availability of a
service as a boolean variable at a specific point of time. The evaluation is run on
an average notebook (1.5 GHz, Pentium M processor). If appropriate methods
(such as in the reference configuration) are used, the memory requirements are
bounded and do not significantly increase because the instance data, i.e. the
knowledge learned by the prediction methods, is saved instead of measured raw
context data. In most cases, the memory consumption is dominated by proba-
bility tables. Thus, the upper bound of memory required for the instance data
depends on the number of variables connected with the method and the number
of their possible values in the Prediction Net. The maximum amount of mem-
ory required for the instance data in the example scenario is about 20 KB and
the processing time for learning is insignificant (i.e. considerably less than 1%
CPU load). The processing time of a prediction depends on the number of vari-
ables in the Prediction Net, the number of prediction rounds and the number
of time steps in the time interval which is taken into account for the predic-
tion. Theoretical considerations show that – regarding these dependencies – the
time complexity is linear. This result is also confirmed by practical experiments
regarding the number of time steps in the time interval (cp. Figure 7) and sim-
ilarly the number of prediction rounds (time consumption ranging from 13 ms
for 50 rounds to 117 ms for 500 rounds if a prediction about service availabil-
ity is requested 60 minutes ahead). Considering the current processing power
of smaller mobile devices (e.g. smartphones), the results indicate that also such
relatively complex predictions take less than one second and, thus, the resource
consumption is relatively well suited even for less powerful mobile devices.

The analysis of accuracy begins with the “empty” prediction system which
still has no knowledge learned at runtime. In the course of time, the system
learns from the current values of the historical data. Predictions are executed
concurrently. The achieved accuracy is determined by comparing the predicted
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probability of a service’s availability with the actual availability (as boolean
value) described in the historical source data. A prediction is considered to be
correct if the prediction result states that service availability is probable (resp.
unprobable) and the service is actually available (resp. unavailable) in future.

Figure 8 shows the accuracy of predictions about the availability of the two
service types at different days. Because the (more simple) ad-hoc file exchange
service is often unavailable, this regularity can be learned quickly and predictions
about its availability already start with relatively good results, i.e. predicting
that the service is not available is correct in most cases. Furthermore, in the
following days, the system learns to distinguish the availability of the service and
the accuracy slightly increases. Also the prediction results about the availability
of the print service improve very quickly. Thus, at Tuesday the system is already
able to predict that the printer service is available when the user is at work.

However, the predictions about the ad-hoc file exchange service are still not
completely satisfactory, i.e. a trivial prediction approach always predicting that
the service will be unavailable would not be significantly worse. Therefore, an
enhanced solution could make use of the full potential of coprocessing by au-
tomatically preferring the methods with smallest uncertainty arising from the
prediction and thus improve the adaption to the individual user. In the case of
the ad-hoc file exchange service, e.g. the net size should play a more important
role than the time of day and the position which both currently rather disturb
predictions.

4.2 Conceptual Evaluation and Discussion

The fundamental principles of the approach of Structured Context Prediction
are appropriate to fulfill most of the requirements as identified in Section 1. First,
they establish genericness (requirements 1, 2, 3). They enable a configuration of
the prediction system which meets application- and variable-dependent demands
(e.g. originated by different scale types and dependency types) because methods
can be chosen flexibly according to the domain-specific knowledge. Additionally,
variables as attributes of entities constitute a generic metamodel in order to



capture the application domain. Thus, many different applications with diverse
demands for their domains and possible contexts are supported (requirements 1,
2). An adaptation to the user takes place by adaptive online-learning (require-
ment 3). The effort for application developers to enable context predictions will
be decreased in many cases if an implementation of a prediction system according
to the presented approach is used as a reusable system support (requirement 6),
because the system coordinates the methods and offers a reference configuration
of already implemented methods which can be extended in the future. When all
required methods are implemented, the application developers can handle them
as black boxes and only have to configure them, combine them and define the
data dependencies between them in an abstract way by using the graphical rep-
resentation of the Prediction Net and the XML-representation of the prediction
model. Compared to Mayrhofer’s and Sigg’s approach, the effort for application
developers is still high because domain-specific knowledge is used and has to be
incorporated by the application developers. However, this compromise allows for
facilitating the prediction task at runtime and for enabling high accuracy and
efficiency without limiting the approach of Structured Context Prediction to a
special application domain, i.e. keeping it generic.

The possibility to select appropriate methods for the considered application
domain is not only a positive aspect in face of genericness, but also in view of
accuracy and efficiency (requirements 4, 5). For each variable, the best method to
handle the characteristics and regularities determining the value of this variable
can be selected. Efficiency can in particular be enhanced if no dependencies are
expected between a set of variables. For example, the availability of a service does
not necessarily depend on the availability of another service (cp. Example 2).
Some dependencies exist, but are known to be instable, i.e. to change from time
to time due to unobserved, external influences. Such dependencies are candidates
to be ignored so that accuracy and efficiency can be improved. Additionally, it
makes sense not to offer and prepare predictions about variables which will never
be used. It is e.g. unnecessary to enable predictions about the future position of
a device using the information whether a service is available unless it is needed
by the application. Finally, the development of an appropriate prediction model
can ensure scalability and applicability in the context of heterogeneous devices.
For example, the application developers have the possibility to select methods
with only a small demand for resources in case the application is targeted to be
run on resource-restricted mobile devices.

5 Conclusion

As a further step towards pervasive environments, the approach of Structured
Context Prediction realizes a prediction system as a framework with high gener-
icness and potential for high accuracy and efficiency at the same time. So, an
approach with a new combination of characteristics in comparison to the ap-
proaches analyzed in Section 2 is established (cp. Figure 1). In contrast to an-
alyzed previous approaches which are often restricted to special applications,



e.g. to those which only use high-level-context, the composability of prediction
methods and the integration of domain-specific knowledge as proposed here en-
ables support for a wide range of applications. However, there are still some open
research tasks - especially in view of the usability of the developed framework. In
particular, a reduction of the effort for application developers (e.g. by supporting
tools for the development of prediction models) constitutes a major challenge to
further facilitate the prediction of future context by context-aware applications.
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