A. Andronov, A. A. Vitt, A. A. Khaikin, and A. E. , Theory of oscillators, 1987.

A. Antle, M. C. Foley, N. C. Foley, D. K. Silver, and R. , Gates and Oscillators II: Zeitgebers and the Network Model of the Brain Clock, Journal of Biological Rhythms, vol.94, issue.1, pp.14-25, 2007.
DOI : 10.1177/0748730406296319

A. Astashev, V. Babitsky, V. Kolovsky, and M. , Dynamics and Control of Machines, 2001.

N. Bagheri, J. Stelling, and F. J. Doyle, Circadian phase entrainmentvia nonlinear model predictive control, International Journal of Robust and Nonlinear Control, vol.63, issue.17, pp.1555-1571, 2007.
DOI : 10.1002/rnc.1209

N. Bagheri, J. Stelling, and F. J. Doyle, Circadian Phase Resetting via Single and Multiple Control Targets, PLoS Computational Biology, vol.1, issue.7, pp.1-10, 2008.
DOI : 10.1371/journal.pcbi.1000104.s003

. Be, V. N. Belykh, G. V. Osipov, N. Kucklander, B. Blasius et al., Automatic control of phase synchronization in coupled complex oscillators, Physica D, pp.81-104, 2005.

B. Blekhman and I. I. , Synchronization in Science and Technology. Moscow: Nauka, 1971 (in Russian) [English translation: 1988, Synchronization in Science and Technology

C. Canavier, C. C. Achuthan, and S. , Pulse coupled oscillators and the phase resetting curve, Mathematical Biosciences, vol.226, issue.2, pp.77-96, 2010.
DOI : 10.1016/j.mbs.2010.05.001

C. Cheal, A. J. Delean, S. Sweatman, H. Thompson, and A. A. , SPATIAL SYNCHRONY IN CORAL REEF FISH POPULATIONS AND THE INFLUENCE OF CLIMATE, Ecology, vol.88, issue.1, pp.158-69, 2007.
DOI : 10.3354/meps222197

D. Danzl, P. Moehlis, and J. , Spike timing control of oscillatory neuron models using impulsive and quasi-impulsive charge-balanced inputs, 2008 American Control Conference, pp.171-176, 2008.
DOI : 10.1109/ACC.2008.4586486

D. Datta, A. K. Stephens, and J. A. , Synchronization of motor unit activity during voluntary contraction in man., The Journal of Physiology, vol.422, issue.1
DOI : 10.1113/jphysiol.1990.sp017991

E. Efimov, D. V. Fradkov, and A. L. , Oscillatority of Nonlinear Systems with Static Feedback, SIAM Journal on Control and Optimization, vol.48, issue.2, pp.618-640, 2009.
DOI : 10.1137/070706963

E. Efimov and D. , Phase resetting control based on direct phase response curve, Journal of Mathematical Biology, vol.50, issue.4, pp.855-879, 2011.
DOI : 10.1007/s00285-010-0396-y

URL : https://hal.archives-ouvertes.fr/hal-00560990

E. Efimov, D. Sacre, P. Sepulchre, and R. , Controlling the phase of an oscillator: A phase response curve approach, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
DOI : 10.1109/CDC.2009.5400901

F. Fradkov, A. L. Pogromsky, and A. Y. , Introduction to control of oscillations and chaos, World Scientific, vol.35, 1998.
DOI : 10.1142/3412

. Fop, D. B. Forger, and D. Paydarfar, Starting, stopping, and resetting biological oscillators: in search for optimum perturbations, J. Theor. Biol, vol.230, pp.521-532, 2004.

. Gl, L. Glass, Y. Nagai, K. Hall, M. Talajic et al., Predicting the entrainment of reentrant cardiac waves using phase resetting curves, Physical Rev. E, vol.65, pp.65-74, 2002.

G. Govaerts, W. Sautois, and B. , Computation of the Phase Response Curve: A Direct Numerical Approach, Neural Computation, vol.18, issue.4, pp.817-847, 2006.
DOI : 10.1162/neco.1995.7.2.307

G. Guckenheimer, J. Holmes, and P. , Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields

G. Guevara, M. R. Glass, and L. , Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias, Journal of Mathematical Biology, vol.69, issue.1, pp.1-23, 1982.
DOI : 10.1007/BF02154750

G. Guevara, M. R. Glass, L. Shrier, and A. , Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells, Science, vol.214, issue.4527, pp.1350-1353, 1981.
DOI : 10.1126/science.7313693

H. Hansel, D. Mato, G. Meunier, and C. , Synchrony in Excitatory Neural Networks, Neural Computation, vol.63, issue.2, pp.307-337, 1995.
DOI : 10.1103/PhysRevLett.70.2391

I. Izhikevich and E. M. , Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, 2007.

K. Kawato, M. Suzuki, and R. , Biological oscillators can be stopped?Topological study of a phase response curve, Biological Cybernetics, vol.8, issue.4, pp.241-248, 1978.
DOI : 10.1007/BF00361045

. Kok, W. D. Koenig, and J. M. Knops, Large-scale spatial synchrony and cross-synchrony in acorn production by two California oaks, Ecology, vol.94, issue.1, pp.2013-83

. Ko and A. S. Kovaleva, Frequency and phase control of the resonance oscillations of a non-linear system under conditions of uncertainty, J. Applied Mathematics and Mechanics, vol.68, pp.699-706, 2004.

K. Kuramoto and Y. , Chemical Oscillations, Waves and Turbulence, 1984.
DOI : 10.1007/978-3-642-69689-3

. Ku and J. Kurths, A special issue on phase synchronization in chaotic systems, Int. J. Bifur. Chaos, issue.11, 2000.

L. Leloup, J. C. Goldbeter, and A. , Incorporating the Formation of a Complex between the PER and TIM Proteins, Journal of Biological Rhythms, vol.380, issue.1, pp.70-87, 1998.
DOI : 10.1177/074873098128999934

L. Leloup, J. C. Goldbeter, and A. , Chaos and Birhythmicity in a Model for Circadian Oscillations of the PER and TIM Proteins in Drosophila, Journal of Theoretical Biology, vol.198, issue.3, pp.445-459, 1999.
DOI : 10.1006/jtbi.1999.0924

L. Li, J. Dasanayake, I. Ruths, and J. , Control and Synchronization of Neuron Ensembles, IEEE Transactions on Automatic Control, vol.58, issue.8
DOI : 10.1109/TAC.2013.2250112

L. Lin, Y. Sontag, E. D. Wang, and Y. , A Smooth Converse Lyapunov Theorem for Robust Stability, SIAM Journal on Control and Optimization, vol.34, issue.1, pp.124-160, 1996.
DOI : 10.1137/S0363012993259981

. Mo and P. A. Moran, The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology, Australian Journal of Zoology, vol.1, pp.291-298, 1953.

M. Mosekilde, E. , M. Yu, and D. Postnov, Chaotic Synchronization. Applications To Living Systems, 2002.

. Nan, H. Nakao, K. Arai, K. Nagai, Y. Tsubo et al., Synchrony of limit-cycle oscillators induced by random external impulses, Phys. Rev. E, vol.72, issue.2, p.26220, 2005.

P. Pampus, M. Winkel, and W. , The extended Moran effect and large-scale synchronous fluctuations in the size of great tit and blue tit populations, Journal of Animal Ecology, vol.76, pp.315-325, 2007.

R. Rand, D. A. Shulgin, B. V. Salazar, D. Millar, and A. J. , Design principles underlying circadian clocks, Journal of The Royal Society Interface, vol.1, issue.1
DOI : 10.1098/rsif.2004.0014

R. Rosenstock, T. S. Hastings, A. Koenig, W. D. Lyles, D. J. Brown et al., Testing Moran's theorem in an agroecosystem, Oikos, vol.123, issue.9, pp.1434-1440, 2011.
DOI : 10.1111/j.1600-0706.2011.19360.x

R. Roy, R. Thornburg, and K. S. , Experimental synchronization of chaotic lasers, Physical Review Letters, vol.72, issue.13, pp.2009-2012, 1994.
DOI : 10.1103/PhysRevLett.72.2009

S. Schmied, A. Ivarsson, C. Fetz, and E. E. , Short-term synchronization of motor units in human extensor digitorum communis muscle: relation to contractile properties and voluntary control, Experimental Brain Research, vol.97, issue.1, pp.159-172, 1993.
DOI : 10.1007/BF00228826

S. Smeal, R. M. Ermentrout, G. B. White, and J. A. , Phase-response curves and synchronized neural networks, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.67, issue.1
DOI : 10.1126/science.663646

S. Sparrow and C. , The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, 1982.
DOI : 10.1007/978-1-4612-5767-7

T. Tass and P. A. , Phase Resetting in Medicine and Biology. Stochastic Modeling and Data Analysis, 1999.

T. Tass and P. A. , Desynchronization of brain rhythms with soft phase-resetting techniques, Biological Cybernetics, vol.87, issue.2, pp.102-115, 2002.
DOI : 10.1007/s00422-002-0322-5

T. Taylor, S. R. Gunawan, R. Petzold, L. R. Doyle, and F. J. , Sensitivity Measures for Oscillating Systems: Application to Mammalian Circadian Gene Network, IEEE Transactions on Automatic Control, vol.53, issue.Special Issue, pp.177-188, 2008.
DOI : 10.1109/TAC.2007.911364

T. Thommen, Q. Pfeuty, B. Morant, P. Corellou, F. Bouget et al., Robustness of Circadian Clocks to Daylight Fluctuations: Hints from the Picoeucaryote Ostreococcus tauri, PLoS Computational Biology, vol.5, issue.11, p.1000990, 2010.
DOI : 10.1371/journal.pcbi.1000990.s008

URL : https://hal.archives-ouvertes.fr/hal-00449974

. Tr, D. Tran, A. Nadau, G. Durrieu, P. Ciret et al., Field chronobiology in a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms, Chronobiology International, vol.28, pp.307-317, 2011.

W. Wang, Y. Núñez, F. Doyle, and I. F. , Increasing Sync Rate of Pulse-Coupled Oscillators via Phase Response Function Design: Theory and Application to Wireless Networks, IEEE Transactions on Control Systems Technology, vol.21, issue.4, pp.2013-1455
DOI : 10.1109/TCST.2012.2205254

W. Winfree and A. T. , The Geometry of Biological Time, 1980.
DOI : 10.1007/978-3-662-22492-2

Y. Yakubovich, V. A. Starzhinskii, and V. M. , Linear differential equations with periodic coefficients, 1975.

Z. Zhao and G. , Phase organization of circadian oscillators in extended gate and oscillator models, Journal of Theoretical Biology, vol.264, issue.2, pp.367-376, 2010.
DOI : 10.1016/j.jtbi.2010.02.003