
HAL Id: hal-01063157
https://inria.hal.science/hal-01063157v3

Submitted on 17 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping-free and assembly-free discovery of inversion
breakpoints from raw NGS reads

Claire Lemaitre, Liviu Ciortuz, Pierre Peterlongo

To cite this version:
Claire Lemaitre, Liviu Ciortuz, Pierre Peterlongo. Mapping-free and assembly-free discovery of inver-
sion breakpoints from raw NGS reads. Algorithms for Computational Biology, Jul 2014, Tarragona,
Spain. pp.119-130, �10.1007/978-3-319-07953-0_10�. �hal-01063157v3�

https://inria.hal.science/hal-01063157v3
https://hal.archives-ouvertes.fr


Mapping-Free and Assembly-Free Discovery

of Inversion Breakpoints from Raw NGS Reads

Claire Lemaitre1, Liviu Ciortuz1,2, and Pierre Peterlongo1

1 INRIA/IRISA/GenScale, Campus de Beaulieu, 35042 Rennes cedex, France
{claire.lemaitre,pierre.peterlongo}@inria.fr

2 Faculty of Computer Science Iasi, Romania
ciortuz@info.uaic.ro

Abstract. We propose a formal model and an algorithm for detecting
inversion breakpoints without a reference genome, directly from raw NGS
data. This model is characterized by a fixed size topological pattern in the
de Bruijn Graph. We describe precisely the possible sources of false pos-
itives and false negatives and we additionally propose a sequence-based
filter giving a good trade-off between precision and recall of the method.
We implemented these ideas in a prototype called TakeABreak. Ap-
plied on simulated inversions in genomes of various complexity (from E.
coli to a human chromosome dataset), TakeABreak provided promising
results with a low memory footprint and a small computational time.

Keywords: structural variant, NGS, reference-free, de Bruijn graph.

1 Introduction

Structural variation is an important source of variations in genomes, that can
be involved in phenotypic variations, inherited diseases, evolution and specia-
tion. The extent of structural variations in populations has been only recently
acknowledged, thanks mainly to next generation sequencing (NGS). In fact, by
sequencing the genomes of several human individuals, one can find more DNA in-
volved in structural variations than in single nucleotide polymorphism (SNP) [8].
However, due to the small size of the reads these variants are much more difficult
to identify than SNPs. Most methods proposed so far rely on mapping the reads
on a reference genome. The main approach calls structural variant breakpoints
when mapped read pairs show discordant mappings with respect to expected
insert-size and orientation of the reads [7]. Due mainly to repetitions in com-
plex genomes and mapping errors, these methods suffer from high false positive
rates and a small overlap between predictions obtained by different methods [1].
Noteworthy, copy number variations seem to have focussed most attention and
efforts, whereas balanced structural variants such as inversions have been less
investigated [8], suggesting that the latter are even more difficult to detect in
short read data.

All these approaches rely on a reference genome and on a first mapping step.
This is a strong limitation when dealing with organisms with no available refer-
ence genome or one of poor quality or too distantly related. On the other hand,

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): AlCoB 2014, LNBI 8542, pp. 119–130, 2014.
c© Springer International Publishing Switzerland 2014



120 C. Lemaitre, L. Ciortuz, and P. Peterlongo

one can also perform full de novo assembly of re-sequenced genomes and com-
pare the resulting assemblies [6], however de novo assembly remains a difficult
and resource intensive task and this could be reduced by targeting directly in-
version variants. The problem we address is therefore: can we identify inversion
signatures directly in raw NGS reads without the need of any reference genome
nor full assembly of the reads? Several methods have been developed recently for
calling biological events of interest directly from raw unassembled reads, by tar-
geting specific patterns in assembly graphs. Some of them are dedicated to detect
SNPs or small indels [10,9,13] or alternative slicing events in RNA-seq data [11].
Cortex var [4] claims to detect any variant generating a bubble pattern, but does
not target specifically inversions or other balanced structural variants.

Themain contribution of this paper is an analysis and a formalmodeling of topo-
logical patterns generated by inversions in the de Bruijn Graph. Additionally, we
propose an algorithm detecting such inversion patterns. This algorithmwas imple-
mented in a tool calledTakeABreak that was used as a proof of concept and that
can be downloaded from http://colibread.inria.fr/TakeABreak/. Applying
this tool on simulateddatasets showed that i) thedescribedmodel detectswithhigh
recall and precision inversion breakpoints ii) approximate repeats present in com-
plex genomes only slightly decrease performances iii) time and memory are very
limited.

2 Inversion Pattern in the de Bruijn Graph

2.1 Preliminaries

Given a sequence s on the DNA alphabet Σ = {A,C,G, T }, we use the concept of
k-mers that are words of length k in s. We denote by ←−s the reverse-complement
of sequence s, for instance with s = TTGC, ←−s = GCAA.

de Bruijn Graph. The approach we propose is based on the use of a de Bruijn
Graph. Given a set of sequences such as reads in the assembly framework, a de
Bruijn Graph is a directed graph where the set of vertices corresponds to the
k-mers from the sequences, and a directed edge connects a source k-mer a to a
target k-mer b if the k−1 suffix of a is equal to the k−1 prefix of b. Usually, in the
genome assembly framework [14], a de Bruijn Graph node stores explicitly a k-
mer and implicitly its reverse complement. Thus there are two ways of traversing
a node: either reading the explicit k-mer or reading the implicit one; we denote
this notion by the state of the node: explicit or implicit. In this context, each
edge is labeled by the states of its source and target nodes. In the following n→

ω

denotes the node storing explicitly or implicitly ω, in the state such that reading
n→
ω provides the k-mer ω. Respectively, n←

ω denotes the same node in the state
such that reading n←

ω provides the k-mer ←−ω .
Given two nodes n→

start and n→
stop, we say that a path of length l exists from

node n→
start to node n→

stop, iif node n→
stop can be reached using l nodes from node

n→
start and for any traversed node, it should be entered and left in the same state

(i.e. explicit or implicit). Let k-path denote a path of length k.

http://colibread.inria.fr/TakeABreak/


Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 121

Fig. 1. Sequences aIb and a
←−
I b, showing the four particular k-mers a, u, v and b at

the breakpoints

Inversion. Given a fixed k value and a set of input sequences, we define an

inversion as a sequence I of length larger or equal to k such that aIb and a
←−
I b

occur both at least once, each in any of the input sequences, with a and b being
two k-mers. We call u (resp. v) the prefix (resp. suffix) of length k of I. Our

inversion model imposes a �= ←−
b and u �= ←−v . Figure 1 proposes a graphical repre-

sentation of an inversion. We call the breakpoints of the inversion, the junctions
between the inverted segment and the non-inverted parts. Such a rearrangement
generates therefore two breakpoints in each sequence.

2.2 Inversion Pattern

An inversion, such as shown in Figure 1, generates a particular motif in the de
Bruijn Graph. The only differences in terms of k-mers between both sequences,
with and without the inversion, involve the breakpoints of the inversion: only
the k− 1 k-mers spanning each breakpoints differentiate the two sequences. The
breakpoints at the left of the inverted segments are then characterized by a
fork in the de Bruijn Graph, which is defined by a common node n→

a that
branches to two distinct k-paths that end respectively in n→

u and n←
v . Similarly,

the other two breakpoints (at the right) are characterized by two k-paths starting
from n←

u and n→
v that join in n→

b . These two forks, being connected by two
common nodes (corresponding to the k-mers u and v respectively, and their
reverse complements), lead to a particular motif in the de Bruijn Graph, that
we call the inversion pattern, as exemplified in Figure 2.

It is important to note that the definition of the inversion pattern imposes

conditions on the four k-mers a, u, v, b. First, a �= ←−
b and u �= ←−v for the two

distinct forks to exist. Second the node n→
a must be branching, that is the first

nucleotide of u must be different from the first nucleotide of ←−v .
One major advantage of this motif is that it can be traversed by 4 k-paths in

the de Bruijn Graph: one from n→
a to n→

u ; one from n←
u to n→

b , one from n←
b to

n←
v ; one from n→

v to n←
a . Being composed of only fixed length paths, finding the

presence of such motif in a de Bruijn Graph is rapid and rather simple.
Notice that this motif presents some drawbacks. First, it detects the presence

of inversion breakpoints but it does not provide the inversion itself. As second
drawback, the motif is perfectly symmetrical: starting from node n←

b , or n←
u or

n→
v leads to the discovery of the same inversion. As presented Section 3.2, we

propose a way to output only once each inversion breakpoints. Finally, such a
motif may witness approximate repeats instead of inversions (see Section 3.4).



122 C. Lemaitre, L. Ciortuz, and P. Peterlongo

Fig. 2. Schematic example of the inversion pattern generated by sequences aIb (the

blue path) and a
←−
I b (the red path) in a de Bruijn Graph with k = 4. Nodes are

represented as two-stage boxes, with the upper part in black showing the explicit k-
mer and the lower part, in grey, the implicit one. DNA k-mers are not represented,
instead the node content shows proportion of full or junction of the four main k-mers
a, u, v, b and their reverse complements. For sake of simplicity and without loss of
generality, we consider that all k-mers of au, vb, a←−v and ←−u b are explicitly stored.
The state of a node traversed by edges entering and leaving its upper (resp. lower)
part is explicit (resp. implicit). The green paths represent the paths enumerated by
TakeABreak algorithm. The dashed green path is only checked, once the nodes nv

and nb are found.

3 Algorithm for Inversion Pattern Detection

3.1 Main Algorithm

This section describes an algorithm for efficient detection of the inversion pattern
from an already constructed de Bruijn Graph.

A “naive” algorithm for detecting the inversion pattern would be to check for
each possible starting k-mer a a k-path from n→

a to n→
u , then from n←

u to n→
b ,

then from n←
b to n←

v and then from n→
v to n←

α and finally checking that a = α.
This approach would lead to the construction of 4k-paths from n→

a leading to a
combinatorial explosion in complex genomes.

We propose an algorithm whose longest walked paths are of length 2k, then
strongly limiting the search space. The main idea is to start from any branching
node (a node having more than one outgoing edge) n→

a , to detect all nodes
reachable by a k-path, storing them in several sets Nα depending on the first
letter α of these nodes. The second main step is then to detect any node n→

b

(
←−
b �= a) such that there exist a k-path from n←

u to n→
b and a k-path from

n←
b to n←

v , with n←
u ∈ Nα and n←

v ∈ Nβ and α �= β. In such case the pair of
sequences au and vb is output. Algorithm 1 proposes a high level presentation
of our algorithm.

3.2 Canonical Representation of Occurrences

The inversion pattern presents some symmetries. In most cases (see Section 3.3),
the inversion pattern generated by an inversion will be detected by our algorithm
as four distinct occurrences each starting from one of the four main nodes: n→

a ,
n←
u , n←

b and n→
v . The output of the algorithm 1 is a pair of words au and vb



Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 123

1. Input: A list of branching nodes and a de Bruijn Graph of all input reads.
2. Provides: A set of pairs of inversion breakpoint sequences
3. for each branching node n→

a do
4. Compute all paths of length k starting from n→

a

5. Store all reached nodes starting with letter α in Nα (α ∈ {A,C,G, T})
6. for each α ∈ {A,C,G} do
7. for each n→

u ∈ Nα do
8. Compute all paths of length k from n←

u

9. Store all reached nodes in B
10. for each n→

b ∈ B do
11. for each n←

v ∈ ∪Nβ>α do
12. if a path of length k exists from n←

b to node n←
v then

13. Output (au, vb)

Algorithm 1. Main algorithm to detect the inversion pattern

depending both on the starting node n→
a and the order of detection between

n→
u and n←

v . To avoid outputting several times the same inversion, we define
its canonical representation as the smallest 2-words output in lexicographical

order among the eight possible rearrangements: (au, vb), (a←−v ,←−u b), (←−u←−a ,
←−
b ←−v ),

(←−u b, a←−v ), (vb, au), (v←−a ,
←−
b u), (

←−
b ←−v ,←−u←−a ), (

←−
b u, v←−a ). Only the canonical rep-

resentation is reported and only once.

3.3 Presence of Small Inverted Repeats at the Breakpoints

If an inversion contains an inverted repeat of size larger or equal to k − 1 at its
breakpoints, this inversion will not generate the inversion pattern since it does
not generate new k-mers nor new paths in the de Bruijn Graph with respect to

the non inverted sequence. This is the case for instance if a =
←−
b or u = ←−v .

In the case of an inverted repeat whose length is smaller than k − 1, such
inversion still generates the inversion pattern, however the latter is not be fully
symmetrical. Suppose there is an inverted repeat of size x < k − 1 at the break-
points or overlapping the breakpoints. As the first node n→

a must be branching,
it imposes that the repeated sequence is included in k-mer a and considered out-
side the inverted segment (note that even with the full sequences at hand, we can
not decide if the inversion includes the repetition entirely, partially or not at all).

The suffix of size x of a is then equal to the prefix of size x of
←−
b . It implies also

that there are no more k−1 distinct k-mers at each breakpoint that differentiate
the two sequences, but k−1−x k-mers. Therefore the two forks of the inversion
pattern, represented in Figure 2, are shortened. In this case, the nodes n←

u and
n→
v reached after k-paths are not necessarily branching and can not constitute

starting k-mers in other occurrences of the inversion pattern. Instead k-mers at
the end of (k − x)-paths in the fork constitute the other starting k-mers.

In fact, such an inversion will still be detected as 4 occurrences but the sets of
k-mers a, u, v and b will be different depending on the starting k-mer. Starting
from inside (n←

u or n→
v ) or outside (n→

a or n←
b ) the inverted segment I will



124 C. Lemaitre, L. Ciortuz, and P. Peterlongo

Fig. 3. Example of an inversion with small inverted repeats (red arrows) at the break-
points. Breakpoint sequences au, vb (resp. a′u′, v′b′) are obtained starting from nodes
n→
a or n←

b (resp. n←
u′ or n→

v ). The unique canonical representative is represented by the
two grey bottom lines.

generate two distinct sets of 2k words overlapping on 2k − x characters. To
avoid duplicating once again artificially the number of occurrences, the output
of the algorithm truncates the k-mers u and ←−v such that all starting k-mers give
the same sets of words (here of size 2k−x) and a unique canonical representative
can be computed for each of the four occurrences (Figure 3).

3.4 Distinguishing Inversions from Approximate Repeats

Some approximate repeats may generate the inversion pattern in the de Bruijn
Graph and are thus a source of false positives. Consider for instance that a given
sequence au has at least four approximate copies in the sequence, such that au,
au′, a′u and a′u′ with u′ � u (at least the first letter is different) and a′ � a
(at least one substitution or indel anywhere in a). In this situation, without loss

of generality, calling
←−
b = a′ and ←−v = u′, the four paths au, vb(=

←−−
a′u′), a←−v (=

au′), and ←−u b(=
←−
a′u) exist and mimics the inversion pattern. More generally,

high similarity between a and
←−
b and between u and ←−v is characteristic of an

approximate repeat.
In order to distinguish inversions from false positives due to approximate

repeats, we filter out occurrences of the inversion model where a and
←−
b and

where u and ←−v have a Longest Common Subsequence (LCS) size higher than a
given threshold. As an optimization, we try to detect earlier cases where a and←−
b are too similar during the k-path search from n←

u to n→
b . During this step,

we forbid paths that go back on the previous path towards first node n→
a , since

the longer we take the former path, the more similar will be k-mers a and
←−
b .

However, to permit the detection of inversions with small inverted repeats at the
breakpoints, we tolerate to go back on the former path for a given maximum
number of nodes (this parameter is usually fixed to 8).

Additionally, it is well known that high copy number repeats with approximate
copies are an important source of complexity generating highly branching sub-
parts in the de Bruijn Graph. Searching for inversions in such complex part of
the graph presents two main drawbacks. First, as previously mentioned, it is a
source of false positives, and second, it generates a possible huge number of k-
paths whose enumeration can be highly time consuming. To overcome these two
drawbacks we stop the inversion pattern detection from a node na as soon as the
product of the cardinality of the two largest sets Nα is bigger than a limit (called



Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 125

LCT for Local Complexity Threshold). This product is a lower approximation of
the minimal number of couples of k-paths that are to be enumerated from the
starting na. Similarly, we apply the same strategy once a set of nodes B (see
Algorithm 1 line 9) is detected from a node n→

u : if the cardinality of B times the
cardinality of the largest set Nα is larger than LCT , then the exploration from
node n→

u stops. This last product reflects another lower bound of the number of
paths to be checked. Note that this approach highly limits both false positives
and computational time, while having a limited impact on recall, as shown in
results Section 4.2.

3.5 TakeABreak Implementation

We implemented the proposed algorithm in a prototype called TakeABreak.
It takes as input one or several sets of sequences in fasta or fastq format. Its
main parameters are the k-mer size k; max sim ∈ [0, 100] the maximal similarity

authorized between a and
←−
b and between u and ←−v , expressed as a percentage of

k-mer size; and LCT : the Local Complexity Threshold (see Section 3.4). Prior to
the inversion pattern detection phase, the de Bruijn Graph is constructed using
the Minia data structure [2,12]. This graph is constructed using only k-mers
having at least 3 occurrences in order to discard sequencing errors. This is a
very common parameter used for de Bruijn Graph-based assembly. The second
phase implements algorithm 1. The output is a fasta file containing, for each
detected inversion, its breakpoint sequences. These are the 2k− 2 (or 2k− x− 2
in the case of an inverted repetition of size x) words centered on the canonical
representation (au, vb). By removing the two extreme nucleotides, it ensures that
the output paths are made of the k-mers that overlap the breakpoints and that
must be specific to each sequence.

TakeABreak was implemented in C++ with the GATB library [3], provid-
ing notably the Minia data structure, and it can be downloaded from
http://colibread.inria.fr/TakeABreak/.

4 Results

To evaluate the ability of TakeABreak to detect inversions in reads, we gen-
erated artificial read datasets. First, non-overlapping inversions of varying sizes
were simulated in a copy of a real genome. Then we simulated the sequencing
processing on both genomes, the original one and the one with artificial inver-
sions. Finally both read sets were given as input to TakeABreak. To classify
the results of TakeABreak as true positive or false positive, we first generated
for each simulated inversion its canonical representation of breakpoints such as
described in sections 3.2 and 3.3 and then called a prediction of TakeABreak
as true positive if it is exactly present in this set of true breakpoints. Finally,
recall and precision were computed as follows: recall as the number of true pos-
itives over the number of simulated inversions, and precision as the number of
true positives over the number of predictions.

http://colibread.inria.fr/TakeABreak/


126 C. Lemaitre, L. Ciortuz, and P. Peterlongo

In more details, inversions were simulated as follows. Each inversion was put
sequentially. For each inversion, its first breakpoint is chosen uniformly along the
sequence, then its size is sampled uniformly in a given interval (here [k− 1000]),
finally if it does not overlap and is sufficiently far from a formerly placed inversion
(the min distance was fixed to k nucleotides) the inversion is kept and its sequence
is reversed-complemented. To simulate reads, 100 bp reads are sampled uniformly
along the genome, sequencing errors are put also uniformly with 1 % rate, the
depth of coverage was fixed to 40x for each genome.

4.1 Results on a Bacterial Genome

TakeABreak was first evaluated on a simple and small dataset based on the
bacterial E. coli K12 genome, in which 1000 random inversions were simulated.
TakeABreak was applied on this simulated dataset with default parameters
(k = 31, max sim = 80%, LCT = 100). On this simple dataset, TakeABreak
proved to be highly efficient to detect inversion breakpoints, since it predicted
the 1000 true positive inversions, leading to a 100% recall for 100% precision
(see Table 1). Cortex var bubble caller [4] was run on the same data and failed
to detect any of the simulated inversions.

Table 1. Precision and recall results for TakeABreak on simulated datasets. The first
part of the table presents results obtained with default parameters (k = 31, max sim =
80%, LCT = 100), the second part shows the decrease of precision when relaxing
filtering parameters (k = 31, max sim = 100, LCT = 10000). # FP indicates the
amounts of false positives.

Recall (%) Precision (%) # FP

E. coli genome - default parameters 100.00 100.00 0
C. elegans genome - default parameters 96.00 99.07 9
Human chromosome 22 - default parameters 87.60 92.50 71

C. elegans genome - relaxed parameters 99.60 0.37 271,374
Human chromosome 22 - relaxed parameters 93.50 0.06 1,442,760

4.2 Results on More Complex Genomes

Bacterial genomes are small and contain few repeats, leading to rather simple
de Bruijn Graph and few false positives of the inversion pattern. To evaluate
TakeABreak on more complex genomes, we simulated inversions in eukaryotic
genomes and chromosomes, first in the full C. elegans genome (∼ 100 Mbp) and
second in human chromosome 22 (∼ 35 Mbp without N bases). As expected (see
Section 3.4), precision and recall decrease when the repeat content of the genome
increases, as shown in Table 1. However, this effect is greatly limited by the use
of filtering parametersmax sim and LCT , since relaxing these parameters leads
to millions of false positives (see Table 1).



Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 127

Note that these parameters have to be fixed carefully as they can also affect
the recall, as shown in Figure 4 where precision and recall results are represented
for varying values of max sim and LCT . This figure shows that both parame-
ters are useful to decrease the false positive rate and that the proposed default
parameters offer a good trade-off between precision and recall.

Fig. 4. Effect of the filtering parameters, max sim (a) and LCT (b), on precision
and recall values for the C. elegans (open symbols) and human chromosome 22 (solid
symbols) datasets. Vertical dashed lines represent the default parameters.

4.3 Time and Memory Performances

These tests were performed with 2.3 GHz Intel Core i7 processors, with 8GB
RAM. Table 2 shows time and memory performances of the prototype TakeA-
Break for the different datasets. Time and memory increase with the complexity
of the datasets. Even if the human chromosome dataset is smaller than the C.
elegans one, the computational time is much larger for human. This shows that
the complexity of the graph is not solely linked to the size of the genome, but
also to its repeat content, with human chromosome 22 high copy number repeats
generating sub-parts of the graph with high density of branching nodes and
imbricated patterns of inversions.

Nevertheless, as presented Table 2, TakeABreak scales up to complex and
large datasets. The highest memory consumption is reached during the de Bruijn
Graph construction and is limited to 1GB, allowing TakeABreak to be exe-
cuted on a standard desktop (note that the full human genome would need 6GB
of memory [12]). The graph construction time is limited to at most 20 minutes
for the most complex dataset we used. The time needed for enumerating all
inversion patterns is sensitive to genome complexity (from 1 second for E. coli
to one hour and a half for human chromosome 22) and still remains acceptable.
Moreover, in addition to dramatically improving the precision (see Section 4.2),
we can notice that the default filters highly reduce the computational time (e.g.
from 7h40 without filters to 1h30 with filters on the human dataset).



128 C. Lemaitre, L. Ciortuz, and P. Peterlongo

Table 2. Time and memory performances of TakeABreak on simulated datasets with
default parameters. For each dataset we indicated the number of reads and the total
number of nucleotides it contains. Time values given in parenthesis are those obtained
while relaxing the filter parameters (bottom part of Table 1).

Time (s) Memory
Graph

construction
Inversion
detection

Graph
construction

Inversion
detection

E. coli genome
(3.7M reads 370 Mbp)

24 1 1GB 3MB

C. elegans genome
(80M reads, 8 Gbp)

78
935

(7408)
1GB 53MB

Human chromosome 22
(28M reads 2.8 Gbp)

1205
5412

(27554)
1GB 153MB

5 Discussion and Conclusion

In this work, we formalized for the first time the topological pattern generated
by the inversion of a DNA segment in the de Bruijn Graph representing both
sequences, with and without the inversion.

We also proposed a first analysis of what kind of variant or sequence feature
can or can not generate this pattern. The pattern involves only the 2k sequences
around the breakpoints of the inversion (k being the k-mer size of the de Bruijn
Graph). Therefore the size of the inversion does not limit the existence of the
pattern as long as it is greater than k. The pattern is based on four k-mers at
each side of the breakpoints that must be identical between both sequences with
and without the inversion. As a consequence, the breakpoint regions must not
contain any substitution or indel at distance less than k from both breakpoints,
that is as if the inversion was generated by perfect blunt-ended double strand
breaks. Finally, another feature that can prevent an inversion from generating
this pattern is the presence of an inverted repeat of size ≥ k − 1 at each break-
points since all breakpoint sequences will follow the same paths in the de Bruijn
Graph.

On the other hand, we showed that the pattern can be generated by other
sequence features than inversions. First, some approximate repeats with appro-
priate combinations of differences can easily generate this pattern, these are
considered as false positive or noise since they do not differentiate the compared
genomes. If in small bacterial genomes, this situation is quite rare, our tests
show that in more complex genomes this can dramatically increases the num-
ber of false positive calls, explaining why we added a sequence-based filter to
this topology-based pattern. Indeed, with high copy number repeats, such as
transposable elements in eukaryotic genomes, such combinations of at least two
differences in repeats of size 2k is very likely to happen. Another variant that
can generate the inversion pattern is the reciprocal translocation, since it has
also two breakpoints per sequence (with and without the translocation) with
the same combinations of four k-mers. We consider this as another advantage



Mapping-Free and Assembly-Free Discovery of Inversion Breakpoints 129

of this pattern, because, in this case, this is also a structural variant that can
differentiates genomes and has therefore a potential biological interest.

In this work, we also proposed and implemented an efficient algorithm to
enumerate all inversion patterns in a de Bruijn Graph, together with powerful
filtering strategies to avoid false positives due to approximate repeats. The tests
we performed on simulated data prove that this approach enables to recover al-
most all simulated inversions quite rapidly. The power of this pattern lies mainly
in its fixed size. Contrary to structural variants with only one breakpoint, such
as insertions and deletions, it is not necessary to traverse in the graph the full
inverted segment to detect the presence of the inversion. In fact, insertions and
deletions generate bubble patterns that can only be detected by traversing the
full inserted or deleted sequence [4,11], this strongly limits the size of detectable
events (at least in complex genomes) and increases the computational time. In-
versions too could be detected as bubbles but Cortex var did not detect them,
even the smallest ones, probably because it requires bubbles not to contain any
branching node while such nodes are inherent of inversion patterns, as shown in
this paper.

The tests and simulations we performed were meant to demonstrate the va-
lidity of our pattern and of our algorithm, we are aware that they can still be
improved to better fit actual genome re-sequencing data. Indeed, only inversions
were simulated without any other polymorphism that could impact the break-
points. Inversions were put following a uniform distribution, whereas rearrange-
ment distribution is likely not random and some rearrangements can be linked
for instance to repeated sequences. Finally, only perfect blunt-ended breakpoints
were simulated which may not reflect all molecular mechanisms of such events
(for instance, non-homologous end joining is known to generate small indels at
the very breakpoint). For all these reasons, recall values we obtained are likely
to be over-estimated with respect to real inversions. However, our promising re-
sults on such simulated inversions open the way to further improvements of the
model.

First, the model could largely be improved by additionally including SNP or
small indel detection models such as [13]. Thus both SNP and inversion detec-
tion would not suffer from each other. This would improve recall for events that
lie close to each other and could be used as preliminary step of the assembly
process. Second, the breakpoint detection algorithm could be coupled with a
third party local assembly or gap-filling tool, such as MindTheGap [5], to get
the sequence of the inverted segment and not only its breakpoints. Finally, other
biological variants can benefit from this approach. As already mentioned, recip-
rocal translocations can be detected by the proposed model as is. Additionally,
the model could be extended to the detection of other rearrangements that have
more than two breakpoints, such as transpositions that generate a three-fork
model, thus showing high similarity with the model proposed in this paper.

Acknowledgments. The authors warmly thank Erwan Drezen and Guillaume
Rizk for implementation support and Marie-France Sagot for interesting dis-
cussions. This work was supported by the Région Bretagne SAD-MIRAGE



130 C. Lemaitre, L. Ciortuz, and P. Peterlongo

project and by the ANR (French National Research Agency), ANR-12-BS02-
0008 Colib’read project and ANR-12-EMMA- 0019-01 GATB project.

References

1. Alkan, C., Coe, B.P., Eichler, E.E.: Genome structural variation discovery and
genotyping. Nat Rev. Genet. 12, 363–376 (2011)

2. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based
on a bloom filter. Algorithms for Molecular Biology 8, 22 (2013)

3. Drezen, E., et al.: The Genome Assembly and Analysis Tool Box,
http://gatb.inria.fr/ (Manuscript in Prep. 2014)

4. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de bruijn graphs. Nature Genetics 44, 226–232
(2012)

5. Lemaitre, C., et al.: MindTheGap Software, http://mindthegap.genouest.org/
(Manuscript in Prep. 2014)

6. Li, Y., Zheng, H., Luo, R., Wu, H., Zhu, H., Li, R., et al.: Structural variation in
two human genomes mapped at single-nucleotide resolution by whole genome de
novo assembly. Nat. Biotechnol. 29, 723–730 (2011)

7. Medvedev, P., Stanciu, M., Brudno, M.: Computational methods for discovering
structural variation with next-generation sequencing. Nat Methods 6, S13–S20
(2009)

8. Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E.: 1000 Genomes Project: Map-
ping copy number variation by population-scale genome sequencing. Nature 470,
59–65 (2011)

9. Nordström, K.J.V., Albani, M.C., James, G.V., et al.: Mutation identification by
direct comparison of whole-genome sequencing data from mutant and wild-type
individuals using k-mers. Nature Biotechnology 31, 325–330 (2013)

10. Peterlongo, P., Schnel, N., Pisanti, N., Sagot, M.-F., Lacroix, V.: Identifying sNPs
without a reference genome by comparing raw reads. In: Chavez, E., Lonardi, S.
(eds.) SPIRE 2010. LNCS, vol. 6393, pp. 147–158. Springer, Heidelberg (2010)

11. Sacomoto, G.A., Kielbassa, J., Chikhi, R., Uricaru, R., et al.: Kissplice: de-novo
calling alternative splicing events from rna-seq data. BMC Bioinformatics 13, S5
(2012)

12. Salikhov, K., Sacomoto, G., Kucherov, G.: Using Cascading Bloom Filters to Im-
prove the Memory Usage for de Brujin Graphs. In: Darling, A., Stoye, J. (eds.)
WABI 2013. LNCS, vol. 8126, pp. 364–376. Springer, Heidelberg (2013)

13. Uricaru, R., et al.: discoSnp Software, http://colibread.inria.fr/discosnp/

(Manuscript in Prep. 2014)
14. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using

de bruijn graphs. Genome Research 18, 821–829 (2008)

http://gatb.inria.fr/
http://mindthegap.genouest.org/
http://colibread.inria.fr/discosnp/

	Mapping-free and Assembly-free Discovery of Inversion Breakpoints from Raw NGS Reads
	Introduction
	Inversion Pattern in the de Bruijn Graph
	Preliminaries
	Inversion Pattern

	Algorithm for Inversion Pattern Detection
	Main Algorithm
	Canonical Representation of Occurrences
	Presence of Small Inverted Repeats at the Breakpoints
	Distinguishing Inversions from Approximate Repeats
	TakeABreak Implementation

	Results
	Results on a Bacterial Genome
	Results on More Complex Genomes
	Time and Memory Performances

	Discussion and Conclusion


