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Abstract

Non rigid registration is an important task in computer

vision with many applications in shape and motion mod-

eling. A fundamental step of the registration is the data

association between the source and the target sets. Such as-

sociation proves difficult in practice, due to the discrete na-

ture of the information and its corruption by various types

of noise, e.g. outliers and missing data. In this paper we

investigate the benefit of the implicit representations for the

non-rigid registration of 3D point clouds. First, the tar-

get points are described with small quadratic patches that

are blended through partition of unity weighting. Then, the

discrete association between the source and the target can

be replaced by a continuous distance field induced by the

interface. By combining this distance field with a proper

deformation term, the registration energy can be expressed

in a linear least square form that is easy and fast to solve.

This significantly eases the registration by avoiding direct

association between points. Moreover, a hierarchical ap-

proach can be easily implemented by employing coarse-to-

fine representations. Experimental results are provided for

point clouds from multi-view data sets. The qualitative and

quantitative comparisons show the outperformance and ro-

bustness of our framework.

1. Introduction

Point set registration is a fundamental issue in shape

modeling with several applications in computer vision [16],

robotics or computer graphics [32]. This is particularly true

in the recent years, as the expansion of affordable 3D sen-

sors and of efficient point based reconstruction techniques

have made point cloud processing a popular research do-

main. Registering two point clouds consists in finding the

best deformation that aligns the two sets. Existing works

that tackle this problem can be classified with respect to

the deformation model they consider to transform point sets

and also to the distance they use to measure the similarity

between point sets. From optimization point of view, the

earlier defines a solution space while the latter builds an ob-

jective function to be minimized. Hence, both terms have

strong influence on the convergence to a meaningful solu-

tion. In this paper we particularly focus on the distance term

and investigate the benefit of implicit interfaces in the case

of non-rigid registration.

Independently of the deformation model, that can ex-

hibit various type of rigidity from (rigid to non-rigid), the

distance measure between two point clouds fundamentally

relies on the point association scheme that is devised over

which point distances are evaluated. Most of the existing

strategies in that respect are based on discrete point asso-

ciations. Some use the Euclidean distance and associate

closest points in a deterministic way, as in ICP [3], or in a

probabilistic way, as in [15]. Others better approximate the

real distances between the associated shapes by considering

normal and curvature information as in [26]. All these dis-

tance estimations are very sensitive to noise and outliers and

they are prone to errors with missing parts. Moreover, the

minimization of these distance approximations often gets

trapped in local minima.

In this work we experiment a flexible interface (Fig.1(b))
for non-rigid registration with the objective to alleviate the

need for discrete point associations. This interface is an im-

plicit function that can define a distance field around the tar-

get point set. Interface representations have been success-

fully used to rigidly register two point sets, e.g., [27] and

we consider here the extension to the non-rigid case. The

interface induces a gradient field hence relaxing the con-

straint for explicit point correspondences (see Fig.1(c)). In

addition, the interface representation can be implemented

in a coarse-to-fine manner in order to avoid local minima.

Figure1(c)− (d) illustrates this principle with first a coarse

implicit interface that captures the global shape information

and then gradually switches to a finer interface that accounts

for more details of the shape. The main features of our ap-

proach are the following:

1. A new efficient formulation that solves non-rigid regis-

tration problem without requiring any correspondence.
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(a) (b) (c) (d) (e)

Figure 1. Using implicit interface for registration: (a) initial pose of the source and target sets; (b) source patches and the local quadrics

representing the target; (c) the implicit interface induces a gradient field; (d) deformed source patches fitting the interface; a coarse-to-fine

interface has been used in (c)− (d); (e) the final deformation of the template.

2. The proposed representation allows for coarse to fine

strategies in order to avoid local minima.

3. The resulting optimization can be performed by itera-

tively solving sparse linear system of equations.

4. The approach challenges traditional techniques that

consider time consuming discrete point associations

are prone to errors with noise, outliers and missing data

The remainder of the paper is as follows. Section 2 dis-

cusses related works in surface registration. The approach

is detailed in Section 3 . Section 4 presents results and com-

parisons on public data sets.

2. Related Works

Point set registration consists in finding the best transfor-

mation that align two point sets in the same pose and in a

single coordinate system. As mentioned earlier, the prob-

lem relies on two main aspects, namely the deformation

model and the distance measurement. In this section the

related works are presented with respect to these aspects.

Deformation model: such model should be defined prior

to any rigid or non-rigid registration. Its importance comes

from the fact that it defines the parameter space within

which the optimization will be performed. It can be simply

rigid or affine transformations that are linear with respect to

the parameter vector allowing hence for only a few degrees

of freedom. When it comes to non-rigid deformation, the

model must be more elaborated in order to capture free form

motions while the surface properties are preserved. These

transformations can be divided in two main categories: the

extrinsic and intrinsic deformations.

In the extrinsic deformation models, the whole space

where the object is embedded undergoes a transformation

and it deforms the object as well. For instance, in Thin-

Plate Spline (TPS) [5], the space is deformed by changing

the control weights of some radial basis functions. In Free-

Form Deformation (FFD) [30] a mapping is provided by

controlling the B-spline basis functions. Both transforma-

tions are widely used to model the deformation especially

for medical imaging applications, where some region based

information is available. The rigidity of these transforma-

tions is controlled by a quadratic regularization term that

may penalize unnatural motions.

In contrast, the intrinsic deformation models, only con-

sider the surface manifold. Changes are therefore applied

directly on the points over the surface instead of the whole

space. Laplacian deformation is one the most popular tech-

niques in this category [31] that is widely used in motion

capture applications, e.g. [1]. Local geometric properties

(δ-coordinates) extracted at each vertex are assumed to be

preserved during the transformation. Skinning methods like

[18] use embedded skeleton and preserve the distances to

the bone during the deformation, while [13] and [28] try to

preserve isometric distances between the points.

In our approach, following [6] and [7], the non-rigid

deformation is modeled as a combination of locally rigid

transformations, which are applied to the small patches on

the manifold. However, in order to reach a meaningful re-

sult, the compatibility of these local rigid patches must be

maintained using some regularization term. For instance,

[2] uses a naive stiffness term that imposes the similarity be-

tween the neighboring affine matrices. Instead, we consider

a very simple rigidity term, proposed in [7], that checks the

transformation effects of each patch on its neighbors. This

choice hands over a quadratic deformation term that forces

the patches to move together, as it is explained in Section 3.

Li et al. in [20] employ a similar approach in order to

capture non-rigid deformation through the local rigid trans-

formations. Firstly, a deformation graph is considered by

a uniformly sampling over the source mesh. Then, each

point undergoes an affine transformation that affects the

neighboring points; this influence is measured in a simi-

lar way as [2]. After applying these local deformations, the

whole mesh is undergoes a global rigid transformation. This

model has been improved in [19] after replacing the uniform

sampling by a temporally adaptive distribution that refines



the deformation graph. Articulated models are described in

[9] through a set of rigid transformations that are associated

to each point using skinning weights.

Data association: this is another major aspect to be con-

sidered as it defines the distance between the source and

target. Many surface matching approaches employ features

like spin images [16] or heat kernel signatures [32] for solv-

ing the assignment problem. However, in this work we only

consider the spatial coordinates of the points. Iterative Clos-

est Point (ICP) [3] is the most popular technique in that

respect, where every source point is paired with its clos-

est corresponding point in the target set for minimizing the

accumulated distance. This distance might not be very ac-

curate due to missing points for instance. In [10] and [25]

further geometric information including normals and cur-

vatures are exploited for better distance estimations. The

authors in [19] employed a combination of point-to-point

and point-to-plane distances for developing a fitting energy

term in non-rigid registration.

Distance fields are also frequently used in order to ac-

celerate the correspondence search. The distance transform

and its derivatives are precomputed in a regular grid of vox-

els first [12]. The computation is still based on the discrete

point associations and the accuracy depends on the grid

size. Moreover, distance fields may fail in the presence of

noise and missing parts. Probabilistic models, like Gaussian

Mixture Model (GMM), are also popular for defining the

distance [15]. In these models every point cloud is treated

as a probabilistic distribution and the distance is defined as

the correlation of two densities. This can be viewed as a

sort of soft-assignment (e.g., RPM [11]) where many points

in the target set are considered as the potential (weighted)

correspondences of a single source point.

In our approach an implicit interface is used both for rep-

resenting the target set and speeding up the distance compu-

tation. This work extends the rigid registration techniques

in [27] and [35] to the non-rigid case by using a power-

ful implicit representation as the interface [24] in addition

to a flexible deformation model. Unlike the aforementioned

techniques, the proposed method does not require any corre-

spondence search so that the computational cost is reduced.

This approach is also robust to noise as it is handled twice,

during the surface reconstruction and distance estimation.

In addition, using the interface allows to perform coarse-to-

fine estimations.

Optimization: Having designed a deformation model and

a proper distance function, the optimization stage must be

applied to minimize this term. This stage can be viewed as

a search for the best parameters in the shape deformation

space and its complexity depends on the designed energy

term. In [12] a distance field has been used to estimate

the distance during the rigid registration. The outcome is

a function in the form of non-linear least squares that is

solved through the Levenberg-Marquadt algorithm. Li et

al. in [20, 19] apply this framework for minimizing a com-

prehensive energy term for non-rigid registration. In [29],

the optimal TPS parameters are estimated by solving a non-

linear system of equations that are obtained through com-

puting some proper integrals over the mesh. Gauss-Newton

algorithm has been employed in [9] to find the rigid trans-

formations of the articulated model; this is followed by an-

other phase for assigning these rigid motions to the points.

Variational methods are also used to tackle the point set

registration as an energy minimization problem. In [21] a

finite-element method is used to solve a PDE of the warp-

ing field. Euler-Lagrange formulation has been employed

in [35] to reach a smooth gradient field induced by an im-

plicit polynomial. Gradient descent is one of the common

techniques to find the optimal deformation in the nonlinear

cases [17], [22]. Probabilistic approaches can be seen as an

energy minimizing model as well; but, they use a different

optimization framework. EM-like algorithm has been used

in [23] to align two GMMs. Cagniart et al. in [8] have also

employed this algorithm for improving the ICP algorithm

presented in [7].

Linear least squares form, on the other hand, is one the

simplest techniques in optimization that results in a closed

form solution. In [26] a linear framework for registration

is presented by using a curvature based distance estimation,

but it still requires a discrete point association. In the cur-

rent work, we aim at modeling the registration optimization

in a least squares form that is easy and fast to solve. The

proposed technique does not need any discrete point associ-

ation due to the use of implicit interface. Both deformation

and data terms are chosen in the way that can be easily op-

timized using a sparse system of linear equations. Further-

more, a hierarchical approach can be implemented by using

coarse to fine interfaces to avoid local minima.

3. Non-Rigid Registration using Interface

In this section the proposed linear framework for the

correspondence-free non-rigid registration is presented.

First, an implicit interface is reconstructed to describe the

target point cloud. Then, we explain how this interface can

benefit the non-rigid registration by providing a new data

term that avoids discrete point association. Finally, a sparse

system of equation is derived in order to minimize our linear

least squares function.

3.1. Implicit Interface

Implicit functions are among the most flexible represen-

tations for surface reconstruction that do not require any

parameterization on the point cloud. These functions de-

scribe the objects of interest through their zero sets and pro-

vide further information around the objects. The descrip-

tion used in this work is based on small quadratic patches



Figure 2. Using partition of unity for describing a point cloud:

(left) coarse; (mid.) fine level; (right) the induced gradient

field.

that are reconstructed over the cells of an octree. The par-

tition of unity technique is applied afterwards in order to

provide a global implicit function that is smooth [24]. This

interface provides high-level representations from coarse-

to-fine, which can benefit the registration problem.

First of all, some small quadratic functions {f1, f2, ...}
are reconstructed to describe small patches of the target T .

Each function describes a small cell of an octree and can be

further subdivided if more detail should be captured. Then,

a smooth global function F can be reconstructed by blend-

ing these local patches:

F(x) =
∑

i∈Nx

ŵi(x)fi(x) (1)

where N x refers to the set of octree cells in the neighbor-

hood of x. The weighting functions ŵi(x) are calculated in

each point using a radial function of the distance from the

center of the cell. These weights must be normalized in or-

der to sum up to one at any point. The global function F can

be viewed as a convex combination of the quadratic patches

that are blended in a smooth way. The influence of neigh-

boring cells can be easily controlled through the blending

radius defined in the weights [24]. Figure 1 illustrates how

the patches are smoothly blended in different levels.

In this work, we are not interested in the visualization

power of this reconstruction technique. We, instead, use

this tool to obtain a continuous alternative to discrete point

association. As illustrated in Fig.2(right), this function in-

duces a continuous gradient field whose vectors are point-

ing toward the object and their lengths are proportional to

the distances. Taubin in [33], presents a good distance ap-

proximation that is used to define the data energy [27]:

Edata(S,T) =
∑

x∈S

(

F(T(x))

‖∇F(T(x))‖

)2

(2)

where T is the optimal deformation to be applied on the

source set. Instead of minimizing this non-linear term, a

continuous form has been considered in [35] and the follow-

ing gradient field is derived by applying calculus of varia-

tion:

g(x) = −γ
F(x)

‖∇F(x)‖2
∇F(x). (3)

Therefore, every point is associated with a vector along

∇F , which is orthogonal to the iso-surface, and its length

is proportional to its distance from the zero set. This vec-

tor field has been exploited in the current work to develop a

correspondence-free non-rigid registration framework.

3.2. Non­Rigid Registration

Correspondence-free registration based on the implicit

interface has been already used in [27] and [35]. In these

works only the rigid registration problem is considered,

while we present a linear framework for tackling the ”non-

rigid” case using a highly flexible interface. Our formu-

lation also allows a coarse-to-fine approach in order to

avoid local minimums. This is accompanied with a flexi-

ble patch-based deformation model whose rigidity can be

controlled by a quadratic term. As a consequence, a sparse

system of linear equations can be derived to solve our

correspondence-free non-rigid registration.

A non-rigid deformation can be simply modeled as

a combination of local rigid transformations applied on

the surface patches [2]. Indeed, the template surface is

firstly clustered into small patches using a geodesic distance

(Fig.1(b)). Let’s ci denote the center of the i-th patch. Then,

non-rigid deformations can be easily modeled by applying

local rigid transformations Ti(x) = Rix + ti over these

patches. During the registration these rigid parameters can

be updated through an affine perturbation that can be cap-

tured with 6 parameters denoted as ωi = (ui,vi):

T̂i(x) = Ti(x) +Kiωi (4)

where T̂i is the perturbed rigid transformation and Ki is the

skew-symmetric matrix of β = Ri(x − ci) concatenated

with the identity matrix [7]. In the rest of this section we

show how to find the best affine parameters ωi and update

the rigid transformations in order to minimize the data and

deformation energy terms.

Data term: Thanks to the linear form of the update vec-

tor, the data term can be designed in the least squares form

that benefits the optimization step. In the current work the

gradient field in (3), induced by the implicit interface, is ex-

ploited to update the local rigid transformations. In fact, the

source point in the current position Ti(x) must move along

the gradient vector g(Ti(x)) by minimizing the following

term:

Edata(s) = ‖Kiωi − g(Ti(x))‖
2. (5)

This quadratic term is equivalent to imposing three lin-

ear constraints on every source point: Kiωi = g(Ti(x)).
These constraints are only applied on those source points

whose orientation in the current pose is quite similar to

the gradient vector ∇F at that point. This normal com-

patibility check avoids wrong correspondences. Moreover,

through the distance estimation d = |f |/‖∇f‖ at every



source point, those points with the distance bigger than 2σd

(standard deviation) are discarded as well.

Deformation term: The local rigid transformations result

in a meaningful non-rigid deformation as long as the defor-

mation energy can be controlled. Similar to [7] we penalize

the incompatibility of any two neighboring rigid transfor-

mations as follows:

Edeform(T) =
∑

(Pi,Pj)∈N ,

∑

x∈Pi∪Pj

Eij(x) (6)

where N is the set of all possible neighboring patches and

each summand is defined for the points on the pair:

Eij(x) = ‖T̂i(x)− T̂j(x)‖
2. (7)

This term, in fact, measures the similarity of predictions be-

tween the rigid transformation of each patch and its neigh-

boring patches. Following the notation in (4), this term can

be described in the least squares form:

Eij(x) = ‖Kiωi −Kjωj − (Tj(x)−Ti(x))‖
2. (8)

Sparse system: In each iteration we aim at finding the best

6NP affine parameters concatenated in the affine vector ω.

The data and deformation terms are both in the quadratic

form of ω; hence, minimizing the total energy (Edata +
λEdeform) is equivalent to solving an over-determined sys-

tem of equations. The matrix A1, corresponding to the data

term, includes the entries of Ki and the right-hand value

b1 contains the coordinates of the gradient field g(Ti(x)).
Similarly, another sparse matrix A2 is constructed to ex-

press the deformation constraints applied for every point in

a pair of patches; it includes the entries of Ki and −Kj ac-

cording to (8). The right hand vector b2 includes the differ-

ence in predictions. Finally, the following system of linear

equations must be solved to find the update vector:
[

A1

A2

]

ω =

[

b1

b2

]

. (9)

After finding this vector, the closest rigid parameters must

be found; so, the SVD decomposition is applied on the co-

variance matrix between the current points T(S) and up-

dated position T̂(S)1. Then, every affine update Kiωi can

be approximated by the proper rigid parameters (R̂i, t̂i) to

update the patch parameters:

Ri := R̂iRi, ti := R̂iti + t̂i. (10)

4. Experimental Results

The proposed registration framework has been validated

for different data sets, which are either public [34] or ob-

tained through a multi-view camera environment. The in-

terfaces are reconstructed by the partition of unity weight-

ing [24] applied on the quadratic patches acquired by [4];

1
T(S) = {Ti(x),x ∈ S}; T̂(S) = {Ti(x) +Kiωi,x ∈ S}

Figure 3. Using implicit interface for surface tracking: (top) the

implicit interfaces; (bottom) the deformed source patches; notice

the patch colors to find out the correspondences.

octrees of depths 6, 7 or 8 have been used for the represen-

tation. Figure 3(top) illustrates the implicit interfaces used

for avoiding point association during the registration. It

should be highlighted that these surfaces are reconstructed

very fast (less than 1 second for 3K points).

Figure 3 and 4 illustrate the proposed framework for sur-

face tracking for two sets of poses. Firstly, the template

patches are constructed for the first frame by considering

the geodesic distance on the surface. Then, implicit sur-

faces are reconstructed for other frames in order to lead the

deformation. Each frame contains more than 30K points

that are sub-sampled to 3K. Note that this sub-sampling is

only applied to save memory for the deformation term in

(6); the employed surface reconstruction is able to describe

the point clouds of high volume [24]. The last rows in Fig.

3-5 illustrate how the template patches deform rigidly fol-

lowing the gradient field induced by the interface.

Implicit surface reconstruction provides a high-level rep-

resentation without requiring any parametrization. This fact

has been exploited in this paper to benefit the registration

problem. Figure 6 illustrates an example where the target

set has some missing points that are properly interpolated

after the reconstruction. In the case of noisy data set, one

may use l1-norm for quadric fitting before blending them

through the partition of unity weighting [24]. The proposed

framework is very flexible such that any implicit surface

(partition of unity, B-splines [27]) can be used in any level

from coarse to fine. This advantage can be exploited to im-

plement a hierarchical approach in optimization. Figure 7

shows how the proposed framework leads to the global min-

imum while ICP-like methods may get stuck in some local

minima.



Figure 4. 3D point registration using the proposed approach: (top)
the implicit interfaces describing different frames 44, 49, 55, 75;

(bottom) the deformed source patches.

The proposed approach has been quantitatively com-

pared with four different registration methods as presented

in Table 1. The accumulated registration error and the

number of iterations for each case are presented in this ta-

ble. The first and second columns correspond to [14] and

[26], respectively, where FFDs have been used to model

the transformation. In the earlier, the source and target sets

are described by discrete distance transforms constructed in

regular grids. This method is very slow since it requires

some volume integral over the distance fields for comput-

ing the data term, which is minimized by gradient descent

method.

ICP-like methods have been called for the comparisons

in Table 1. In the second column a tangent based estima-

tion is used for distance measurement in order to find the

FFD parameters [26], while in the third column ICP is used

to find the local rigid parameters [7]. ICP-like methods de-

pend on a naive point association so they are very likely to

get trapped in local minima (see Fig. 7). Finally, a proba-

bilistic error based on the Gaussian Mixture Model (GMM)

[15] has been used as the last quantitative comparison. This

method uses TPS warping for modeling the deformation

and it avoids explicit point association by applying an EM

algorithm. This method is quite slow since all the source

point are used as TPS control points and EM algorithm is

repeated inside every iteration.

Table 1 shows how our method outperforms in terms of

error and number of iterations. The accumulated errors in

the last three rows are easily calculated since the ground

truth correspondences are provided by [34]. For the first

two rows, we use the distance from every target point to

the tangent plane of its closest source point; it can be better

estimated by using curvature information though [25]. The

main advantage of our method is to work in a higher level

representation than the point level. This enables us to have

a general description of the point cloud in the coarser levels

Figure 7. ICP approach in (left) easily gets stuck in a local min-

ima, while using interfaces leads to the global minimum (right).

and add more details using the finer levels.

A qualitative comparison between different methods is

presented in Fig. 8 for a quite challenging case, where the

source pose is almost orthogonal to the target. Therefore, it

is very likely that local methods get stuck in some local min-

ima. The first two methods correspond to the linear assign-

ment and coherent point drift [23]. The last three, all use

the locally-rigid deformation model though they end with

different results. Among all, EM algorithm [7] has shown a

similar result to our approach after 500 iterations while ours

has converged in only 30 iterations. In order to handle our

correspondence-free algorithm we initialize a very coarse

interface and switched to a finer one after 15 iterations.

5. Conclusions

In this paper a novel approach for non-rigid registra-

tion between two clouds of points has been proposed. The

main contribution of this work is to consider the problem in

higher level representations, where the source set is clus-

tered into small patches that can deform rigidly, and the

target is reconstructed by an implicit interface. Hence,

the original problem in the point level is converted into a

patches-to-interface problem without requiring any explicit

point correspondence. Moreover, the use of implicit inter-

face allows a coarse-to-fine approach that avoids local mini-

mums. The presented method converges in few iterations, in

which a sparse system of equations must be solved. The ex-

perimental results also illustrate the outperformance in the

convergence and the robustness to the noise, outliers and

missing parts in the target set.
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