Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system

Abstract : A lot of well-balanced schemes have been proposed for discretizing the classical Saint-Venant system for shallow water flows with non-flat bottom. Among them, the hydrostatic reconstruction scheme is a simple and efficient one. It involves the knowledge of an arbitrary solver for the homogeneous problem (for example Godunov, Roe, kinetic,...). If this solver is entropy satisfying, then the hydrostatic reconstruction scheme satisfies a semi-discrete entropy inequality. In this paper we prove that, when used with the classical kinetic solver, the hydrostatic reconstruction scheme also satisfies a fully discrete entropy inequality, but with an error term. This error term tends to zero strongly when the space step tends to zero, including solutions with shocks. We prove also that the hydrostatic reconstruction scheme does not satisfy the entropy inequality without error term.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2016, 85, pp.2815-2837. 〈10.1090/mcom/3099〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01063577
Contributeur : Jacques Sainte-Marie <>
Soumis le : jeudi 27 août 2015 - 10:56:40
Dernière modification le : vendredi 25 mai 2018 - 12:02:06
Document(s) archivé(s) le : samedi 28 novembre 2015 - 10:29:58

Fichiers

kin_hydrost.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Emmanuel Audusse, François Bouchut, Marie-Odile Bristeau, Jacques Sainte-Marie. Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system. Mathematics of Computation, American Mathematical Society, 2016, 85, pp.2815-2837. 〈10.1090/mcom/3099〉. 〈hal-01063577v2〉

Partager

Métriques

Consultations de la notice

649

Téléchargements de fichiers

249