
HAL Id: hal-01064645
https://inria.hal.science/hal-01064645

Submitted on 16 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Synthesis of Attack Trees for Supporting
Computer-Aided Risk Analysis

Sophie Pinchinat, Mathieu Acher, Didier Vojtisek

To cite this version:
Sophie Pinchinat, Mathieu Acher, Didier Vojtisek. Towards Synthesis of Attack Trees for Supporting
Computer-Aided Risk Analysis. Workshop on Formal Methods in the Development of Software (co-
located with SEFM), Sep 2014, Grenoble, France. �hal-01064645�

https://inria.hal.science/hal-01064645
https://hal.archives-ouvertes.fr

Towards Synthesis of Attack Trees

for Supporting Computer-Aided Risk Analysis

Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek

Inria, IRISA, University of Rennes 1, France

Abstract Attack trees are widely used in the fields of defense for the
analysis of risks (or threats) against electronics systems, computer con-
trol systems or physical systems. Based on the analysis of attack trees,
practitioners can define actions to engage in order to reduce or annihi-
late risks. A major barrier to support computer-aided risk analysis is
that attack trees can become largely complex and thus hard to specify.
This paper is a first step towards a methodology, formal foundations as
well as automated techniques to synthesize attack trees from a high-level
description of a system. Attacks are expressed as a succession of elemen-
tary actions and high-level actions can be used to abstract and organize
attacks into exploitable attack trees. We describe our tooling support
and identify open challenges for supporting the analysis of risks.

1 Introduction

Ensuring the security of an information system means guaranteeing data avail-
ability, integrity and confidentiality. In this perspective, a preliminary study of
the system and its environment, called risk analysis, is necessary [4,13]. The dis-
cipline of risk analysis aims to identify and evaluate risks that threaten a given
system. Current methods follow mostly the same outline: practitioners decom-
pose the system into subsystems and produce a model, then draw up a list of
feared events, and finally determine the potential reasons of the realization of
these events. The NATO report [11] showed that the current methods are ill-
suited to manage the security of complex systems. Formal methods, well-defined
formalisms, and analysis tools have the potential to eliminate current barriers. In
particular, attack trees are widely used in the fields of defense for the analysis of
risks (also called threats) against electronics systems, computer control systems
or physical systems [1, 8, 9, 12, 14, 15, 18]. Based on the analysis of attack trees,
practitioners can define actions to engage in order to reduce or annihilate risks.

Up to now, the construction of attack trees is made by hand, based on knowl-
edge and experiences of analysts and technicians. There are construction and
editing tools of attack trees available (e.g., [1, 14, 15]). This manual effort is
time-consuming and error-prone, especially as the size of attack trees can become
substantial. Our goal is to create an automated process able to assist practition-
ers in fulfilling the modeling task. This paper reports on the first steps towards
a methodology, the formal foundations as well as automated techniques to syn-
thesize attack trees from a high-level description of a system. Though attack

trees have deserved a lot of attention [6–10, 12, 18], we are unaware of existing
approaches for (semi-)automatically synthesizing attack trees. Hong et al. [3]
have addressed synthesis of attack trees, but in a setting lacking the precious
hierarchy of actions that enforces the structure of the attack trees. As a result,
there is no control over the outcome: deeply flattened and hard to exploit trees
can be obtained, precluding a further exploitation by risk analysts and domain
experts. For computer system security, Jha et al. [5] and Sheyner et al. [16, 17]
proposed an algorithm to automatically generate an attack graph representing
the system under consideration. In our case, attack graphs are generated from
a description of a system (e.g., a military building). Our methodology allows
the user to specify the intended structure through a hierarchy of actions, with
flexibility on the adequate level of abstraction to choose. Moreover we do not
synthesize scenarios graphs but attack trees.

Our proposed methodology consists in (1) describing the system to protect
as an attack graph (AG); (2) extracting the attacks (the solution-paths going
from an initial state to a final/goal state); (3) gathering all attacks into an at-
tack tree. The exploitation of a high-level specification (e.g., a military building)
raises the level of abstraction – practitioners (experts of a domain) can more
easily express their knowledge and defense objectives. Moreover automating the
approach ensures that the presence of all attacks under study are present in the
attack tree. We notice, though, that a fully automated synthesis is likely to pro-
duce unexploitable (e.g., deeply flatten) trees. Mauw and Oostdijk [9] showed
that numerous structurally different attacks trees can capture the same informa-
tion, out of which a few are readable and meaningful for an expert. An original
and crucial feature of our methodology is the support of high-level actions to
specify how sequences of actions can be abstracted and structured – a high-
level action can be seen as a sub-goal. Likewise experts can control the synthesis
process and obtain attack trees close to what they have in mind. We formalize
hierarchies of actions and use standard pattern-matching techniques to compute
a so-called strategies of the attacks (corresponding to attack suites in [9]), that
provide abstractions of the attack descriptions. The methodology comes with an
environment and a set of languages for generating attacks, specifying high-level
actions, and synthesizing attack trees. We illustrate the synthesis process in the
context of analyzing risks of a military building. We also identify some open
challenges for fully supporting the approach.

Remainder of the paper. Section 2 introduces a running example in the
context of military defense. Section 3 describes background information and
notations used throughout the paper. Section 4 defines attack graphs before in-
troducing in Section 5 hierarchy of actions, strategies, and attack trees. Section 6
summarizes the paper and describes future works.

2 Motivation and Running Example

To illustrate the motivation of our work, let us consider the example of Figure 1.
Military experts want to protect an armoury, i.e., they do not want that the

2

stored weapons fall into the wrong hands. For the sake of risk analysis, we put
ourselves in the attacker’s shoes and look for the ways to intrude the military
building. The armoury consists of six rooms, including a hall monitored by a
video equipment and the storage room. The building is guarded by defenders:
the attacker (ATK) may meet an agent in one of the rooms, a dog in another.
The goal of the analysis is then to find all the relevant paths to reach the
weapons. Relevant means here that we would like to get the successful attacks
that are realistic (no invisibility cloak) and without loops – we would like to
avoid the cases where the attacker goes from a room (say A) to the next room
(say B), goes back to A, then goes to B, and so on. An example of path,

Figure 1. The plan of the armoury to protect

among many others, is that the attacker can cross the hall to go directly into the
storage room; to make sure he or she has not been seen, the attacker can cut the
video surveillance system. The building of Figure 1 involves 17 elements (seven
doors, five windows, three agents, one camera and the arsenal). The number is
substantial since numerous paths and attacks can be envisioned. In practice the
complexity can be even higher. The goal of the project we are involved in is
to assist military experts in synthesizing attack trees. Specifically we want to
generate attacks from the description of a system (e.g., military building) and
synthesize, with the help of some directives, a readable attack tree that military
experts can exploit afterwards.

Running example. In the rest of the paper, we will only consider the end
of the attack, that is, the intrusion in the storage room. In our running example
(Figure 1), the system consists in a simple room and an attacker who still wants
to intrude to steal the weapons located in a locked cabinet of this room. To de-
scribe the states of the system, we define the following three two-valued variables:
Pos(ATK) ∈ {out., room} (out. stands for outdoor) which gives the position of
the attacker in the system at each moment, room ∈ {opened, closed} which de-
scribes the door status, and cabinet ∈ {opened, closed} which tells whether the
weapons are easy to reach or not.

3

3 Preliminary Notations

For a set X, we let X∗ be the set of finite sequences over X, and we denote by ǫ
the empty sequence. Given two sequences s1, s2 ∈ X∗, we let s1.s2 ∈ X∗ denote
the concatenation of s1 and s2. For x ∈ X, we will simply write x for the set
{x} ⊆ X∗. Given a sequence s ∈ X∗ and Y ⊆ X∗ a set of sequences over X∗,
we let s.Y denote the sequences s, s′ where s′ ∈ Y and we s−1.Y be the set of
sequences s′ ∈ X∗ such that s.s′ ∈ Y . For two subsets Y and Z of X∗, we let
Y.Z =

⋃
s∈Y s.Z; it is the set of sequences obtained by concatenating a sequence

in Y with a sequence in Z. We now recall trees, labeled trees and forests.
A tree is a finite set T ⊆ N

∗ of nodes such that: t.i ∈ T implies t ∈ T (prefix-
closeness), and t.i ∈ T implies t.j ∈ T , for all 1 ≤ j < i (left-closeness).
A node t ∈ T is a leaf if t.1 /∈ T ; we write leaves(T) ⊆ T the set of leaves of T .
We let deg(t) be the greatest n such that t.n ∈ T . We write children(t) for the
sequence of ordered children of t in T , i.e., the sequence t.1 . . . t. deg(t) ∈ T ∗. A
branch of T is a sequence i1i2 . . . im such that i1i2 . . . im ∈ leaves(T).

Let Γ be a set. A Γ -labeled tree is a structure τ = (T, ℓ) where T is a tree,
and ℓ : T → Γ is the labeling function; Figures 3(a) and 3(b) depicts two labeled
trees τ1 and τ2. We write w(τ) ∈ Γ ∗ for the sequence of labels of leaf nodes of τ
ordered from left to right. Given a Γ -labeled tree τ = (T, ℓ) and a node t ∈ T ,
we let τt = (Tt, ℓt) be the sub-tree of τ rooted at node t defined by Tt = t−1T
and ℓt(t

′) = ℓ(t.t′), for all t′ ∈ Tt.
A Γ -forest is a finite ordered set {τi}i∈I of Γ -labeled trees.

4 Attack Graphs

We use a standard symbolic representation for dynamic systems, where states
are characterized by valuations over a finite set of variables (ranging over a finite
domain) and transitions between states correspond to actions.

Figure 2 describes the system of our running example: each state, although
numbered, is characterized by a valuation of the relevant variables. Initial states
are marked by an ongoing arrow and goal states (those the attacker wants to
reach) by double row. We can navigate in this graph following arrows that realize
actions; label tc/fl means that either action tc or action fl can be chosen.

Definition 1. An Attack Graph (AG) over a set of actions A is a structure
G = (S, f, I,G), where S a finite set of states, f : S×A → S a partial transition
function, I ⊆ S is a set of initial states, and G ⊆ S is a set of goal states.

The AG Gex = (S, f, I,G) of Figure 2 is formally defined by:

– S = {1, 2, 3, 4, 5, 6, 7, 8}: each state of the system is composed of a combina-
tion of the possibles of the variables.

– I = {1, 5}: the initial states are the states where Pos(ATK) = out. and
room = closed.

– G = {7, 8}: the final states are the states where attacker is inside and the
cabinet opened.

4

1

Pos(ATK) = out.

room = closed

cabinet = closed

2

Pos(ATK) = out.

room = opened

cabinet = closed

5

Pos(ATK) = out.

room = closed
cabinet = opened

6

Pos(ATK) = out.

room = opened

cabinet = opened

3

Pos(ATK) = room

room = opened

cabinet = closed

7

Pos(ATK) = room

room = opened

cabinet = opened

4

Pos(ATK) = room

room = closed

cabinet = closed

8

Pos(ATK) = room

room = closed
cabinet = opened

tc/fl

cd

tc/fl

cd

goin

goout

cd

od

goin

goout

cd

od

uk lk uk lk

ti ti

Figure 2. The AG Gex

– A = {tc, f l, od, cd, goin, goout, uk, lk, ti} is the set of primitive actions, which
respectively means:

Action Meaning
tc type the code (door opener)
fl force the lock
od open the door
cd close the door

goin go inside
goout go outside
uk use a key to open the cabinet
lk lock the cabinet with a key
ti take item (weapon)

– f : S × A → S the partial transition function

ftc ffl fod fcd fgoin fgoout
fuk flk fti

1 7→ 2 1 7→ 2 4 7→ 3 3 7→ 4 2 7→ 3 3 7→ 2 3 7→ 7 7 7→ 3 7 7→ 7

5 7→ 6 5 7→ 6 8 7→ 7 7 7→ 8 6 7→ 7 7 7→ 6 4 7→ 8 8 7→ 4 8 7→ 8

2 7→ 1

6 7→ 5

For example, according to ftc, from the state 1, if we apply the action tc, we
get into the state 2. Similarly, from the state 5, we get into the state 6 after
the application of the same action.

In the rest of this section let G = (S, I,G, f) be an AG over A. We define
attacks as sequences of actions from an initial state to a goal state. We first
recall standard notion on labeled graphs.

A path starting from s ∈ S in G is a sequence of states π = s0s1 . . . sn
such that s0 = s and ∃a ∈ A, f(si, a) = si+1, for all 0 ≤ i < n. A path π
reaches the set S′ ⊆ S if sn ∈ S′. A path π = s0 . . . sn is elementary if, for all
0 ≤ i < j ≤ n, si 6= sj .

Let a1.an ∈ A
∗ be a sequence of actions and let s0 ∈ S. A path induced

by a1.an ∈ A
∗ is a path π = s0s1 . . . sn such that fai+1

(si) = si+1, for all
0 ≤ i < n.

Definition 2. An attack in G is a sequence of actions a1.a2an ∈ A
∗ such

that there exists an elementary path from some initial state induced by a1 . . . an
and which reaches the set G. Let Attack(G) be the set of attacks in G; it is finite.

5

In Gex, tc.goin, f l.goin.cd.uk.ti is an attack either along path 5, 6, 7 or path
1, 2, 3, 4, 8, 8. Also, tc.goin.cd.ti ∈ Attack(Gex).

5 High-Level Actions and Attack Trees

We first define hierarchies of actions used to describe attacks in a more compre-
hensible way called strategy. Then strategies are gathered into an attack tree.

5.1 Hierarchy of actions

The paths extracted from the AG are low-level descriptions of attacks by means
of elementary actions. However, sequences of actions may be abstracted as so-
called high-level actions, explaining some behaviors in a more abstract manner.
This abstraction relies on a hierarchy of actions, which may be updated along
an analysis process.

Consider our running example. The set A of elementary actions describe
the lowest level actions of level 0, written H0. “Higher level” actions can be
considered for example if one wishes to introduce action or for “open room”
which may be achieved, or refined, by performing either (elementary) actions tc
(“type the code”), or fl (“force the lock”), or od (“open the door”). In the same
line, one can define the higher-level action cr (“close room”) uniquely refined as
action cd (“close the door”). Since higher-level actions or and cr can be realized
by actions of level 0, they would belong to level 1, that is the set H1. To H1,
we add action oc (“open cabinet”) refined by performing uk, the action cc (“close
cabinet”) refined by performing lk (“lock the cabinet with key”), and tw (“take
weapons”) refined either by ti, or cd.ti, or od.ti, or ti.tw.

Based on a (somewhat arbitrary) choice of abstraction given by an expert, we
get a hierarchy of actions which consists in a set H0 = A of elementary actions,
and a set H1. The latter is formed of actions whose realizations are sequences
of actions of level 0. More generally, we should describe a high-level actions of
level k by at least a sequence of level k − 1, i.e., a sequence containing at least
an action of level k− 1 (no action of level greater than k− 1). We now formalize
the notion of hierarchy of high-level actions.

Definition 3. A hierarchy over a set of actions A is a structure
H = ({Hk}0≤k≤K ,R) where:

– each Hk (0 < k ≤ K) is a finite set of high-level actions (HLA), with
HK 6= ∅ which forms the top-level actions. K ∈ N is the hierarchy level
and H0 = A is the set of primitive actions. We let H =

⋃
0≤k≤K Hk, whose

typical elements are A,B,A′, A1, A2,
– R ⊆ H×H∗ is the set of the refinement rules which satisfies level(R(A)) ≤

level(A), for all action A ∈ H. In particular, R(A) = A for all A ∈ H0.

We define level : H → {0, . . . ,K}, the level function, by level−1(k) = Hk
1. A

hierarchy is strict if for all action A ∈ H, level(R(A)) < level(A).

1 We may sometimes display level in the structure.

6

As explained above, we have equipped the AG Gex with a 2-level hierar-
chy Hex over A defined by H0 = {tc, f l, od, cd, goin, goout, uk, lk, ti}, H1 =
{or, cr, oc, cc, tw} and H2 = {er, gr, st} and the following refinement rules, where
we write A A1 . . . An instead of (A,A1 . . . An) ∈ R, and even use “ |” on the
right-hand side of to mimic standard notations in formal grammar rules; for
instance, expression or tc | fl | od means that R(or) = {tc, f l, od}.

{
er goin | or.goin | goin.cr | or.goin.cr
gr goout | or.goout | goout.cr | or.goout.cr
st tw | oc.tw | tw.lk | oc.tw.lk





or tc | fl | od
cr cd
oc uk
cc lk
tw ti | cd.ti | od.ti | ti.tw

with HLAs of level 2 er for “enter room”, gr for “get out of room” and st for
“steal weapon”, and we recall HLAs of level 1: or for “open the room”, cr for
“close room”, oc for “open cabinet”, cc “close cabinet”, and tw for “take weapons”.

5.2 Strategies

Strategies provide high-level descriptions of attacks in the AG. These objects
are (forests of) labelled trees whose sequences of leaves describe attacks, while
internal nodes of trees are labelled by HLA.

In the rest of this section, we let G = (S, I,G, f) be an AG over a set of
actions H0, H = ({Hk}0≤k≤K , level,R) be a hierarchy.

Definition 4. A strategy over H is an H-forest σ = {τi}i=1...n such that for
each τi = (Ti, ℓi), and for every t ∈ Ti, ℓi(t) ℓi(t1) . . . ℓi(tj) is a refinement
rule, where t1, . . . , tj are the children of t in Ti. Given a strategy σ, we will write
w(σ) = w(τ1)w(τ2) . . . w(τn) ∈ H∗

0 for the attack of σ.
A strategy σ is winning whenever w(σ) ∈ Attack(G).

The set {τ1, τ2} (see Figures 3(a) and 3(b)) represents a winning Hex-strategy
σ1 with two trees, whose attack is tc.goin.cd.ti. In essence, branching nodes of a
strategy have a conjunctive meaning2.
It should be noted that there may be several strategies associated to an attack.
For instance, strategy σ1 formed by Figures 3(a) and 3(b), and strategy σ2 of
Figure 3(c) have respectively the same attack tc.goin.cd.ti. This phenomenon is
typical of a hierarchy of actions that is “ambiguous”3.

For w ∈ Attack(G), we let Σ(w) := {σ |w(σ) = w} be the set of strategies
associated with w.
Now that we know how to relate attacks in an AG with strategies that exploit
the hierarchy of actions, we can gather strategies into a kind of “and-or” trees
called an attack tree, in the same line as [6].

2 And even a “sequential” one, ı.e. children of the and-node are considered in order
from left to right.

3 As for context-free grammars.

7

er

cror

tc goin cd

(a) Tree τ1

st

tw

ti

(b) Tree τ2

er st

or

tc goin

tw

cd ti

(c) Strategy σ2

Figure 3. Trees τ1 3(a) and τ2 3(b) forming strategy σ1 = {τ1, τ2} such that with
w(σ1) = ti.goin.cd.ti ∈ Attack(Gex). 3(c) is another strategy σ2 for ti.goin.cd.ti.

5.3 Attack Trees

Strategies σ1 and σ2 of Figure 3, although both abstracting attack tc.goin.cd.ti in
Gex, can be distinguished: the former relies on refinement rules er or.goin.cr,
cr cd and tw ti, whereas the latter relies on rules er or.goin and
tw cd.ti. These alternatives can be expressed using trees including some
nodes carrying an “or” semantics.

In the rest of this section, we let H = ({Hk}0≤k≤K , level,R) be a hierarchy.
We consider the signature formed of and connectors defined by C = { ∧

j
|j ∈ N},

where ∧
j

has arity j (see Definition 5).
Attack tree nodes can be labeled by HLAs or by connectors or by the special

symbol win which actually characterizes the root; label win is somehow a “super”
high-level action representing the main goal.

Definition 5. An Attack Tree (AT) over H is a (H ∪ C ∪ {win})-labeled tree
T = (T, ℓ) such that for all t ∈ T , if ℓ(t) ∈ Ck, then t has k children, and
t ∈ leaves(T) iff ℓ(t) ∈ H0. Virtual (resp. true) nodes of T are those nodes
labeled over C ∪ {win} (resp. H).

Definition 6. T = (T, ℓ) over H is well-formed if for any branch n1n2 . . . nm of
T , and for any 1 ≤ i < j ≤ m, letting L = ℓ(n1n2 . . . ni) and L′ = ℓ(n1n2 . . . nj),
if L,L′ ∈ H, then level(L) > level(L′).

In well-formed ATs, the level of actions along a branch strictly decreases; Figure 4
depicts a well-formed AT over Hex

4.

From strategies to ATs. We can embed strategies into ATs. This embedding
consists in (i) explicitly connecting nodes of the trees to the strategy forest,
and in (ii) connecting the roots of all the resulting trees via a “win-then- ∧ ”
mechanism.

We first start explaining (i). Let σ be a strategy over H, and let τ = (T, ℓ) ∈ σ.

We transform τ into the (H ∪ { ∧
j
|j ∈ N})-labeled tree τ̂ = (T̂ , ℓ̂) defined by

induction over the height h of τ as follows.

4 In figures, we omit the arity of connectors.

8

win

∧

er

∧

or

goin

∧

fl

∧

tc

st

∧

tw

∧

cd ti

∧

oc tw

∧

uk

∧

ti

Figure 4. Attack tree T0

– If h = 0, then τ̂ = τ .
– Otherwise, let τ1 = (T1, ℓ1), . . . , τn = (Tn, ℓn) be the ordered sub-trees at τ

root (hence with lower height). Then

• T̂ is the least set containing all the sets {1}, 1.1.T̂1,. . . ,1.n.T̂n, and

• ℓ̂(ǫ) = ℓ(ǫ), ℓ̂(1) = ∧ and ℓ̂(1.i.t) = ℓ̂i(t).

For example, consider the trees τ1 of Figure 3(a) and τ2 of Figure 3(b); the
trees τ̂1 and τ̂2 are depicted in Figure 5(a).

er

∧

cror

∧

tc goin

∧

cd

st

∧

tw

∧

ti

(a) Trees τ̂1 and τ̂2

win

∧

er

∧

cror

∧

tc goin

∧

cd

st

∧

tw

∧

ti

(b) The attack tree Tσ1

Figure 5. Trees τ1 of Figure 3(a) and τ2 of Figure 3(b) transformed before connection
and the resulting attack tree Tσ1

We can now embed strategies into ATs.

Definition 7. Let σ = {(Ti, ℓi)}i=1,...,n be a strategy over some hierarchy H.
The canonical AT associated to σ is Tσ = (T, ℓ) over H defined by:

– T is the least set containing all the sets {1}, 1.1.T̂1, . . . , 1.n.T̂n (a node of

T is then either ǫ or 1 or of the form 1.i.y where y ∈ T̂i).

– ℓ(x) =





win if x = ǫ
∧ if x = 1

ℓ̂i(y) if x = 1.i.y

9

er st

or

fl goin

oc tw

uk ti

(a) Strategy σ3

er st

or

tc goin

oc tw

uk ti

(b) Strategy σ4

er st

or

fl goin

tw

cd ti

(c) Strategy σ5

Figure 6. Strategies included in T0 of Figure 4

Clearly, Tσ respects Definition 5, hence it is an AT. Note also that if H is
strict, then Tσ is well-formed. Figure 5(b) depicts Tσ1

for strategy σ1 of Figure 3.

From ATs to strategies. A given AT T naturally denotes a set Σ(T) of strategies.
Each strategy of Σ(T) is obtained by keeping all nodes of T , but by selecting a
single child in each H-labeled node of T . Due to lack of space we do not formally
define Σ(T). Instead, we provide the clarifying following example.

The AT T0 of Figure 4 is such that Σ(T0) = {σ2, σ3, σ4, σ5} (where the
strategies are given in Figure 3(c), Figure 6(a), Figure 6(b) and Figure 6(c)
respectively), because in T0 there are two nodes (with HLAs or and st), with
two possible refinements each, hence the four outcomes for Σ(T0).

Attack tree synthesis. We equip ATs with a binary operation ⊕ of merging with
the following guaranteed properties.

– ⊕ is associative: (T1 ⊕ T2)⊕ T3 = T1 ⊕ (T2 ⊕ T3), for any ATs T1, T2 and T3.
– ⊕ is well-formedness preserving.
– For any two ATs T1 and T2,

Σ(T1 ⊕ T2) ⊇ Σ(T1) ∪Σ(T2) (1)

It should be noted that Equation (1) is not an equality. This is illustrated by
the AT Tσ2

⊕Tσ3
(for strategies σ2 and σ3 of Figures 3(c) and 6(a)), which turns

out to correspond to T0 in Figure 4, and yet Σ(T0) = {σ2, σ3, σ4, σ5}. Actually,
the fact that Equation (1) is an inclusion instead of an equality is harmless since
we claim that the extra strategies are in general also winning – indeed, returning
to the matter at hand, HLAs would essentially denote sub-goals. Thus, if the
main goal decomposes into HLAs e.g., A then B, and if now A can be refined
into either A1 or A2 and, similarly, if B can be refined into either B1 or B2,
the main goal cannot be achieved following any of the four combinations A1.A2,
A1.B2, B1.A2 and B1, B2.

Operation ⊕ is central as it provides the last step for synthesizing an AT:
from a finite set Σ of strategies, the synthesis is the result of computing

T (Σ) = ⊕σ∈ΣTσ

How this operation can be implemented in a scalable manner is left as future
work (see next section).

10

6 Towards Attack Tree Synthesis

We proposed a mathematical setting to develop procedures that synthesize at-
tack trees. An original and important aspect of our work is that an expert can
participate in the synthesis process through the specification of so-called high-
level actions (HLAs). We also sketched an end-to-end tool-supported methodol-
ogy: starting from a high-level description of a system (e.g., a military building),
practitioners can generate attacks through model-checking techniques, and even-
tually exploit HLAs to synthesize readable and well-structured attack trees. We
are implementing ATSyRA5, a tool built on top of Eclipse and upon the math-
ematical foundations, to support the synthesis methodology with a set of ded-
icated languages. Our work opens avenues for further research and engineering
effort for supporting the analysis of realistic military risks by practitioners.

Interactive Support. The process is likely to be interactive and incremental: ex-
perts obtain an attack tree, add some information, re-synthesize, and so on. At
different steps of the methodology, there are opportunities to parametrize the
synthesis. For instance, experts can typically fine tune the generation of attacks.
Currently, the building specification is transformed into GAL [2] (for Guarded
Action Language) a simple yet expressive formalism to model concurrent sys-
tems. GAL is supported by efficient decision diagrams for model-checking. We
use GAL support to generate attacks. Some predicates can be added to scope
the space in which model checking mechanisms operate over. We can envision
the use of specific languages, independent of GAL and at a higher level of ab-
straction, for easing the generation of attacks considered as relevant. Besides,
experts can guide the synthesis of attack trees through HLAs. Re-structuring
the hierarchy or abstracting a set of attacks can arise if the resulting attack tree
is not satisfactory (e.g., in case the tree is too flat and hard to understand).
Some visualisations and suggestions can help an expert for this task.

Scalability. The number of attacks can be huge, especially if the building spec-
ification contains numerous elements, leading to numerous possible paths for
an attacker. The scalability problem impacts two aspects of the methodology.
First, the synthesis of attack trees: HLA can help to reduce the complexity, since
a hierarchy is pre-defined, guiding a canonical form they should conform. Yet,
implementing the merging operator ⊕ of attack trees faces the very complex
combinatorics induced by pattern-matching-like issues. Heuristics are likely to
be needed both for computing the merge of attack trees and for scaling up. Sec-
ond, we need to only generate relevant attacks. Again, experts can directly tune
GAL to scope the generation: some facilities are needed to ease the task.

Attack Defense. Another step in our work consists in the introduction of the
defender. We aim to study his or her actions and reactions. We plan to consider
game theory and multi-agents systems, keeping close to the clean foundations

5 More information about ATSyRA is available online: http://tinyurl.com/ATSyRA

11

proposed by [7].

Acknowledgements. This work is funded by the Direction Générale de l’Armement
(DGA) - Ministère de la Défense, France. We thank Salomé Coavoux and Maël
Guilleme for their insightful comments and development around ATSyRA.

References

1. AttackTree+. http://www.isograph.com/software/attacktree/.
2. M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg. Towards distributed

software model-checking using decision diagrams. In N. Sharygina and H. Veith,
editors, CAV, volume 8044 of Lecture Notes in Computer Science, pages 830–845.
Springer, 2013.

3. J. B. Hong, D. S. Kim, and T. Takaoka. Scalable attack representation model using
logic reduction techniques. 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, pages 404–411, 2013.

4. ISO, Geneva, Switzerland. Norm ISO/IEC 27002 - Information Technology - Secu-
rity Techniques - Code of Practice for Information Security Management, ISO/IEC
27002:2005 edition, 2005. Section 9.

5. S. Jha, O. Sheyner, and J. Wing. Two Formal Analyses of Attack Graphs. In
Proceedings of the 15th Computer Security Foundation Workshop, pages 49–63,
2002.

6. B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer. Foundations of attack–
defense trees. In Formal Aspects of Security and Trust, pages 80–95. Springer,
2011.

7. B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer. Attack–defense trees.
Journal of Logic and Computation, 24(1):55–87, 2014.

8. B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer. Dag-based attack and
defense modeling: Don’t miss the forest for the attack trees. arXiv preprint
arXiv:1303.7397, 2013.

9. S. Mauw and M. Oostdijk. Foundations of Attack Trees. In International Con-
ference on Information Security and Cryptology - ICISC 2005. LNCS 3935, pages
186–198. Springer, 2005.

10. V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing. Ranking Attack Graphs.
In Proceedings of Recent Advances in Intrusion Detection, 2006.

11. N. Research and T. O. (RTO). Improving Common Security Risk Analysis. Tech-
nical Report AC/323(ISP-049)TP/193, North Atlantic Treaty Organisation, Uni-
versity of California, Berkeley, 2008.

12. B. Schneier. Attack Trees : Modeling Security Threats. Dr. Dobb’s Journal, 1999.
13. E. E. Schultz. Risks due to the Convergence of Physical Security and Information

Technology Environments. Inf. Secur. Tech. Rep., 12:80–84, 2007.
14. Seamonster. http://sourceforge.net/apps/mediawiki/seamonster/.
15. SecurITree. http://www.amenaza.com/.
16. O. Sheyner, J. Haines, S. Jha, R. Lippman, and J. Wing. Automated Generation

and Analysis of Attack Graphs. In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pages 273–. IEEE Computer Society, 2002.

17. O. Sheyner and J. Wing. Tools for Generating and Analyzing Attack Graphs. In
In Proceedings of Formal Methods for Components and Objects, Lecture Notes in
Computer Science, pages 344–371, 2004.

18. O. M. Sheyner. Scenario Graphs and Attack Graphs. PhD thesis, 2004.

12

