
HAL Id: hal-01064652
https://hal.inria.fr/hal-01064652

Submitted on 16 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

pioman: a Generic Framework for Asynchronous
Progression and Multithreaded Communications

Alexandre Denis

To cite this version:
Alexandre Denis. pioman: a Generic Framework for Asynchronous Progression and Multithreaded
Communications. IEEE International Conference on Cluster Computing (IEEE Cluster), Sep 2014,
Madrid, Spain. 2014. <hal-01064652>

https://hal.inria.fr/hal-01064652
https://hal.archives-ouvertes.fr


POSTER: a Generic Framework for Asynchronous

Progression and Multithreaded Communications

Alexandre DENIS

Inria Bordeaux – Sud-Ouest, France, e-mail: Alexandre.Denis@inria.fr

Abstract—Recent cluster architectures include dozens of cores
per node, with all cores sharing the network resources. To
program such architectures, hybrid models mixing MPI+threads,
and in particular MPI+OpenMP are gaining popularity. This
imposes new requirements on communication libraries, such as
the need for MPI_THREAD_MULTIPLE level of multi-threading
support. Moreover, the high number of cores brings new op-
portunities to parallelize communication libraries, so as to have
proper background progression of communication and commu-
nication/computation overlap. In this paper, we present pioman,
a generic framework to be used by MPI implementations, that
brings seamless asynchronous progression of communication by
opportunistically using available cores. It uses system threads
and thus is composable with any runtime system used for
multithreading. Through various benchmarks, we demonstrate
that our pioman-based MPI implementation exhibits very good
properties regarding overlap, progression, and multithreading,
and outperforms state-of-art MPI implementations.

I. INTRODUCTION

With the dramatic increase in the number of cores per
node in clusters, communication libraries have to deal with
multithreading, and may exploit cores to make communication
progress. However, mixing threads and communication is not
straightforward, and care must be taken to design a thread-
aware communication library.

In this paper, we present pioman, a generic framework
to be used by MPI implementations, that brings seamless
asynchronous progression of communication by opportunis-
tically using available cores. It uses system threads and thus is
composable with any runtime system used for multithreading.

II. RELATED WORKS

People have studied parallelism in the communication
library, and shown it may be an opportunity to hide the cost
of communications [1], [2], [3], [4]. OpenMPI [5] supports
MPI_THREAD_MULTIPLE only on TCP, and can overlap
computation and communication only on the sender side on
InfiniBand. RDMA-based MPI [6], [7] may overlap some parts
of transfers thanks to the hardware. MT-MPI [8] is specific
to Xeon Phi and to a given OpenMP runtime. Some solutions
use multithreading to make communication progress [9] which
is very restrictive. Our own previous work [10], [11] lacked
genericity and was bound to the Marcel thread scheduler.

III. A MULTITHREADED COMMUNICATION ENGINE

Tasklets in user-space: Parallelizing network commu-
nication processing is needed for asynchronous progression
and for multithreaded application having their communica-
tion actually progress in parallel. Such mechanisms are well

known in Linux kernel and are known as bottom half since
kernel 2.3.x series. They include tasklets, small tasks to be
executed asynchronously at some time later. The kernel ensures
some guarantees on concurrent operations, deadline, and on
CPU placement. Tasklets opportunistically utilize available
resources, and asynchronously make communication progress
independently of the application execution flow.

We propose a full rewrite of pioman [11] using system
threads (pthread), so as to be compatible with multithreaded
applications, whatever the multithreading runtime or the com-
piler. Its light tasks are called ltasks, which are inspired from
tasklets but not completely mimics their behavior since user-
space and kernel-space are different contexts with different
requirements. These ltasks need to be executed at the following
polling points: idle core, for an opportunistic resource usage;
timer to ensure guaranteed reactivity; and explicit polling, for
a progression at least as efficient as the no-ltask flavor. Idle
uses a low-priority thread, and timer uses a high-priority thread
with sleeps.

Locality: To reduce contention, we take locality into
account. Since architectures is hierarchical, ltask queues are
hierarchical, as a tree of queues attached to entities (core,
cache, socket). Tasks are submitted in the local queue. For
polling, ltasks are dequeued and executed from the most local
queue, then queues from parents are recursively dequeued up
to the root. To reduce contention near the root, we perform
the recursive polling on the parent queue with a frequency
divided by the number of siblings, taking into account that
multiple children object will contribute to the polling on their
parent.

Contention-free locking scheme: Concurrent ltask en-
queue by the communication library and ltask execution by
another thread cause contention, depending on the locking
scheme. For lock-based scheme (mutex, spinlock), threads
compete to acquire the lock. For lock-free scheme, queue
traversal is not possible atomically, so polling means de-
queue/enqueue, and thus competes with applications threads.
We propose submission queues: a companion queue dedicated
to submission is attach to polling queues. The submission
queue is lock-free; the main queue has a spinlock. Tasks from
the submission queues are dequeued by polling threads before
an ltask execution round, and enqueued in the main queue
once the spinlock is already held. Readers and writers use
separate structures, changes from writers are incorporated later
by readers. This solution is lock-free for task submission, spin-
free for polling (uses only trylock, no need to wait if someone
else is already polling). Spinning on locks or atomics, and
shared variable for writing are avoided. Contention is actually
mitigated.



 0

 0.2

 0.4

 0.6

 0.8

 1

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

O
v
e

rl
a

p
 r

a
ti
o

 (
to

ta
l 
ti
m

e
 /

 c
o

m
p

u
te

 t
im

e
)

Computation (usec.)

nmad+pioman
nmad nothread

MVAPICH2
OpenMPI

Fig. 1. Communication/computation overlap ratio, computation on both sides,
4 MB message.

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30

L
a

te
n

c
y
 (

u
s
e

c
.)

Number of threads

nmad+pioman
MVAPICH2

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12  14  16

L
a

te
n

c
y
 (

u
s
e

c
.)

Number of threads

nmad+pioman
MVAPICH2

Fig. 2. Multi-threaded 1-byte latency: 1-to-N (left) and N-to-N (right).

IV. EVALUATION

Our benchmarks are performed on a dual Xeon E5-
2650@2.00GHz with IB ConnectX3 FDR. We compare
our pioman-enabled NewMadeleine communication library
against OpenMPI 1.7.4 and MVAPICH 2 2.0b.

Progression Benchmarks: Figure 1 reports overlap ratio
with computation on both sender and receiver side. We observe
that pioman-enabled NewMadeleine perfectly overlaps com-
putation and communication as soon as the computation time
equals the communication time.

Multithreaded Benchmarks: To evaluate multithreaded
performance, we consider 1 sender to N receivers, N senders
to N receivers, and 1 sender to 1 receiver with N com-
putation threads. Figure 2 shows that the pioman-enabled
NewMadeleine behaves well with a large number of threads,
while MVAPICH 2 has its latency much more impacted by
threads. OpenMPI was not considered in this benchmark since
it does not support MPI_THREAD_MULTIPLE on IB.

Figure 3 shows that for single-threaded communication
with competing computation threads, pioman-enabled New-
Madeleine and MVAPICH 2 have a constant median latency,
while OpenMPI has a median latency linear with the number
of computing threads.

pioman exhibits better progression properties than state-
of-the-art MPI implementations.

V. CONCLUSION

We have presented pioman, a generic framework to
be used by communication libraries, that brings seamless
asynchronous progression of communication. We have pro-
posed mechanisms that make communication progress on timer
events, opportunistically on idle cores, and allows explicit

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0  20  40  60  80  100  120

L
a
te

n
c
y
 (

u
s
e
c
.)

Number of computing threads

nmad+pioman
OpenMPI

MVAPICH2

Fig. 3. N threads load: 1 MB latency for 1 sending thread, 1 receiving threads,
N computing threads on both sides (error bars with min/max/median).

polling. Implementation uses system threads and thus is com-
posable with any runtime system used for multithreading. We
have studied tasks concurrency and proposed two mechanisms
that mitigate contention, based on locality and an original
locking scheme. We have shown that pioman makes actually
communication progress in background, thus allowing compu-
tation and communication to overlap. We have shown that it
handles multithreaded load and does not collapse with massive
number of threads. In future works, we plan to modify MPI

applications to actually take benefit from multithreading and
to overlap computation and communications on both sides.
Finally, we are working on porting it to the Intel Xeon Phi.

REFERENCES

[1] J. Sancho, K. Barker, D. Kerbyson, and K. Davis, “Quantifying the po-
tential benefit of overlapping communication and computation in large-
scale scientific applications,” in Proceedings of the 2006 ACM/IEEE

conference on Supercomputing. ACM New York, NY, USA, 2006.

[2] S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui, M. Tatineni, K. W. Schulz,
W. L. Barth, A. Majumdar, and D. K. Panda, “Quantifying performance
benefits of overlap using MPI-2 in a seismic modeling application,” in
International Conference on Supercomputing, ser. ICS. ACM, 2010,
pp. 17–25.

[3] G. Hager, G. Schubert, T. Schoenemeyer, and G. Wellein, “Prospects
for truly asynchronous communication with pure mpi and hybrid
mpi/openmp on current supercomputing platforms,” in Cray Users

Group Conference, 2011.

[4] T. Hoefler and A. Lumsdaine, “Message progression in parallel
computing-to thread or not to thread?” in Cluster Computing, 2008

IEEE International Conference on. IEEE, 2008, pp. 213–222.

[5] R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open MPI: A Flexible
High Performance MPI,” in The 6th Annual International Conference

on Parallel Processing and Applied Mathematics, 2005.

[6] S. Sur, H. Jin, L. Chai, and D. Panda, “RDMA read based rendezvous
protocol for MPI over InfiniBand: design alternatives and benefits,” in
Proceedings of the eleventh ACM SIGPLAN symposium on Principles

and practice of parallel programming. ACM New York, NY, USA,
2006, pp. 32–39.

[7] M. J. Rashti and A. Afsahi, “Improving communication progress and
overlap in mpi rendezvous protocol over rdma-enabled interconnects,”
in High Performance Computing Systems and Applications, 2008. HPCS

2008. 22nd International Symposium on. IEEE, 2008, pp. 95–101.

[8] M. Si, A. J. Peña, P. Balaji, M. Takagi, and Y. Ishikawa, “Mt-mpi:
Multithreaded mpi for many-core environments,” in ACM International

Conference on Supercomputing (ICS), Jun. 2014.

[9] M. Wittmann, G. Hager, T. Zeiser, and G. Wellein, “Asynchronous mpi
for the masses,” CoRR, vol. abs/1302.4280, 2013.

[10] F. Trahay, A. Denis, O. Aumage, and R. Namyst, “Improving reactivity
and communication overlap in MPI using a generic I/O manager,” in
EuroPVM/MPI, ser. LNCS, no. 4757. Springer, 2007, pp. 170–177.

[11] F. Trahay and A. Denis, “A scalable and generic task scheduling system
for communication libraries,” in IEEE International Conference on

Cluster Computing, New Orleans, LA, Sep. 2009.


