Fast and Accurate Texture Recognition with Multilayer Convolution and Multifractal Analysis

Abstract : A fast and accurate texture recognition system is presented. The new approach consists in extracting locally and globally invariant representations. The locally invariant representation is built on a multi-resolution convolutional net- work with a local pooling operator to improve robustness to local orientation and scale changes. This representation is mapped into a globally invariant descriptor using multifractal analysis. We propose a new multifractal descriptor that cap- tures rich texture information and is mathematically invariant to various complex transformations. In addition, two more techniques are presented to further im- prove the robustness of our system. The first technique consists in combining the generative PCA classifier with multiclass SVMs. The second technique consists of two simple strategies to boost classification results by synthetically augment- ing the training set. Experiments show that the proposed solution outperforms existing methods on three challenging public benchmark datasets, while being computationally efficient.
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger
Contributeur : H. Yahia <>
Soumis le : mercredi 17 septembre 2014 - 11:14:51
Dernière modification le : mercredi 14 novembre 2018 - 13:54:07
Document(s) archivé(s) le : jeudi 18 décembre 2014 - 10:36:43


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01064793, version 1



Hicham Badri, Hussein Yahia, K. Daoudi. Fast and Accurate Texture Recognition with Multilayer Convolution and Multifractal Analysis. European Conference on Computer Vision, Sep 2014, Zürich, Switzerland. 2014. 〈hal-01064793〉



Consultations de la notice


Téléchargements de fichiers