Marked point process model for facial wrinkle detection

Abstract : We propose a new model for wrinkle detection in human faces using a marked point process. In order to detect an arbitrary shape of wrinkles, we represent them as a set of line segments, where each segment is characterized by its length and orientation. We propose a probability density of wrinkle model which exploits local edge profile and geometric properties of wrinkles. To optimize the probability density of wrinkle model, we employ reversible jump Markov chain Monte Carlo sampler with delayed rejection. Experimental results demonstrate that the new algorithm detects facial wrinkles more accurately than a recent state-of-the-art method.
Type de document :
Communication dans un congrès
IEEE ICIP - International Conference on Image Processing, Oct 2014, Paris, France. pp.1391-1394, 2014
Liste complète des métadonnées


https://hal.inria.fr/hal-01066231
Contributeur : Seong-Gyun Jeong <>
Soumis le : vendredi 19 septembre 2014 - 13:41:38
Dernière modification le : lundi 5 octobre 2015 - 16:57:34
Document(s) archivé(s) le : samedi 20 décembre 2014 - 11:35:44

Fichier

2014_ICIP_SGJEONG_Submitted.pd...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01066231, version 1

Collections

Citation

Seong-Gyun Jeong, Yuliya Tarabalka, Josiane Zerubia. Marked point process model for facial wrinkle detection. IEEE ICIP - International Conference on Image Processing, Oct 2014, Paris, France. pp.1391-1394, 2014. <hal-01066231>

Partager

Métriques

Consultations de
la notice

585

Téléchargements du document

440