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On necessary conditions of instability and design
of destabilizing controls

Abstract—The problem of formulation of an equivalent char-
acterization for instability is considered. The necessary part
of the Chetaev’s theorem on instability is formulated. Using
the developed necessary instability conditions, the Anti-control
Lyapunov Function (ALF) framework from [1] is extended and
the Control Chetaev Function (CCF) concept is proposed as a
counterpart of the Control Lyapunov function (CLF) theory.
A (bounded) control is designed, which destabilizes a nonlinear
system based on CCF, this control design approach can be useful
either for generation of an oscillating or chaotic behavior as in
[1], or for analysis of norm controllability from [2].

I. INTRODUCTION

The problems of stability analysis and design of stabilizing
controls for dynamical systems attracted a lot of attention
during the last centenary [3], [4], [5], [6]. A rather rich theory
has been developed, which is mainly based on the Lyapunov
function method for stability analysis, and completed by the
CLF approach for stabilization. It has been widely recognized
that the Lyapunov function approach presents an equivalent
(necessary and sufficient) formulation for these problems.
Instability analysis, as counterpart of stability, has received
also some attention, first by the works of Lyapunov [7],
and next by the seminal contribution of Chetaev [8]. Some
particular conditions of instability were obtained in [9] (see
also [10]).

All previously mentioned results for instability were given
as sufficient conditions only, the first attempt to show that for
the case of a purely repulsing equilibrium the Lyapunov’s
conditions are also necessary, has been performed in [11],
some necessary conditions for the instability results from
[9] were derived in [12]. Next, the CLF approach has been
extended in [1] for a destabilizing control design via the
ALF framework. The utility of ALF and the design of
destabilizing controls themselves was shown also in [1] on
the example of control design for generation of oscillations
in nonlinear systems. Another possible motivation for the
interest in destabilizing controls is related with a recently
introduced notion of the norm controllability [2], which is
a property dual to input-to-state stability characterizing how
far the state may go applying a bounded control.

Therefore, so far obtained necessary and sufficient condi-
tions of instability deal with the Lyapunov case, where the
equilibrium is purely repulsing (all trajectories in a vicinity of
the equilibrium are escaping) and some special configurations
from [9], where ad hoc restrictions are imposed on behavior
of the trajectories into invariant cones around the equilibrium.
All these cases are more restricted than the case studied
by Chetaev [8] (the precise definition of this scenario of

instability is given below). Thus the first goal of the present
work is to develop the necessary conditions of the Chetaev’s
result, and next to extend the ALF framework appropriately.

The outline of this paper is as follows. The preliminaries
are given in Section II. The necessary conditions of the
Chetaev’s theorem on instability are formulated in Section III.
The extension of the ALF theory and universal formulas for
destabilizing control design in bounded/unbounded setting
are presented in Section IV. A summary and concluding
remarks are in Section V.

II. PRELIMINARIES

Define R+ = {x ∈ R : x ≥ 0}, where R is the set of real
numbers. The symbol |s| is stated for the absolute value of
a scalar s ∈ R or the Euclidean norm of a vector s ∈ Rn.
Denote B(ε) an open ball centered at the origin of the radius
ε ∈ R+.

Let us consider a nonlinear dynamical system

ẋ = f(x), (1)

where x ∈ Rn is the state vector, f : Rn → Rn is a locally
Lipschitz continuous function, f(0) = 0. A solution of this
system for the initial condition x0 ∈ Rn at the time instant
t = 0 we will be denoted as x(t, x0) (i.e. x(0, x0) = x0),
which is defined and unique for t ∈ [0, T ] with some T ∈
R+. The system (1) is called forward complete if T = +∞
for any x0 ∈ Rn. A set A ⊂ Rn is called invariant for (1) if
x(±t, x0) ∈ A for all t ≥ 0 provided that x0 ∈ A.

Let Ω be an open subset of Rn, 0 ∈ Ω.

Definition 1. [4] At the steady state x = 0 the system (1) is
said to be

(a) stable if for any ε > 0 there is δ(ε) such that for
any x0 ∈ Ω, if |x0| ≤ δ(ε) then |x(t, x0)| ≤ ε for all t ≥ 0;

(b) asymptotically stable if it is stable and for any κ > 0
and ε > 0 there exists T (κ, ε) ≥ 0 such that for any x0 ∈ Ω,
if |x0| ≤ κ then |x(t, x0)| ≤ ε for all t ≥ T (κ, ε);

(c) unstable if it is not stable, i.e. for any δ > 0 there
exists x0 ∈ Ω = B(ε) with |x0| ≤ δ such that x(Tx0 , x0) /∈ Ω
for some Tx0

∈ R+.
If Ω = Rn, then the corresponding properties are called

global stability/asymptotic stability/instability of x = 0 (in
this case Tx0

∈ R+ ∪ {+∞}).

The notation DV (x)f(x) stands for the directional deriva-
tive of a continuously differentiable function V : Rn → R+

with respect to the vector field f evaluated at the point x,
the upper and lower Dini derivatives in the direction of f



for a locally Lipschitz continuous function V are defined as
follows:

D+V (x)f(x) = lim sup
h→0+

V (x+ hf(x))− V (x)

h
,

D−V (x)f(x) = lim inf
h→0+

V (x+ hf(x))− V (x)

h
.

The following theorem has been adapted from [8], [10].

Theorem 1. Let V : Rn → R be a locally Lipschitz
continuous function, V (0) = 0 and there exist ε0 > 0
such that V+ ∩ B(ε) 6= ∅ for any ε ∈ (0, ε0], where
V+ = {x ∈ B(ε0) : V (x) > 0}. If D−V (x)f(x) > 0 for all
x ∈ V+, then the origin is unstable for (1) with Ω = B(ε0).

Note that in this theorem the Lipschitz continuity of
V (x) is needed on the set V+ only, where the derivative
D−V (x)f(x) is calculated.

III. NECESSARY PART OF THE CHETAEV’S THEOREM

Lemma 1. Consider a forward complete system (1) with a
Lipschitz continuous function f : Rn → Rn, f(0) = 0 and
denote by A ⊂ Rn the invariant set for (1) (which contains
all invariant solutions of the system). Then the following
properties are equivalent for some ε0 ∈ R+:

(i) The origin is unstable for (1) with Ω = B(ε0) and
B(ε0) ∩ [A \ {0}] = ∅.

(ii) There is a continuous function V : B(ε0) → R+,
V (0) = 0, which is locally Lipschitz continuous on V+ =
{x ∈ B(ε0) : V (x) > 0} and V+ ∩ B(ε) 6= ∅ for any ε ∈
(0, ε0]. In addition, D−V (x)f(x) > 0 for all x ∈ V+.

The proofs are omitted due to space limitation.
Remark 1. The same result can be obtained if we allow V
to be negative in the interior of the domain where V (x) = 0.
Applying standard smoothing arguments [13], existence of
a smooth function V can be proven in a similar way.
Thus in the following consideration we will consider smooth
Chetaev functions V : B(ε0) → R satisfying the conditions
of Theorem 1 and Lemma 1, i.e. under these conditions
existence of a smooth Chetaev function V : B(ε0) → R
is necessary and sufficient for instability of (1) in B(ε0).

IV. DESTABILIZING CONTROLS

Now consider a variant of system (1), affine in control
input:

ẋ = f(x) +G(x)u, (2)

where x ∈ Rn is the state vector, u ∈ Rm is the control,
f : Rn → Rn and G : Rn → Rm are locally Lipschitz
continuous functions, f(0) = 0. Assume that a locally
Lipschitz continuous control u : Rn → Rm is given,
u(0) = 0, such that the system (2) is unstable at the origin
for Ω = B(ε0) with some ε0 > 0 and B(ε0)∩ [A\ {0}] = ∅,
where as before A ⊂ Rn is the invariant set for (2) with
u = u(x) (by construction 0 ∈ A). Since all conditions
of Lemma 1 are satisfied, then there is a smooth function

V : B(ε0) → R, such that V (0) = 0 and V+ ∩ B(ε) 6= ∅,
V+ = {x ∈ B(ε0) : V (x) > 0} for any ε ∈ (0, ε0], in
addition for all x ∈ V+

D−V (x)[f(x) +G(x)u(x)] > 0.

Such a Chetaev function V is closely related with the
ALF introduced in [1] for the case of globally repulsing
equilibrium. As for the case of the autonomous system (1),
a Lyapunov function can be used for a repulsing steady-state
analysis (in this case V̇ > 0 in a vicinity of the equilibrium)
and a Chetaev function covers a more general case, when
the repulsing trajectories belong to a part of the vicinity. In
the present Chetaev’s setting the definition of ALF can be
extended as follows.

Definition 2. A smooth function V : B(ε0) → R, such that
V (0) = 0 and V+ ∩ B(ε) 6= ∅ for any ε ∈ (0, ε0] where
V+ = {x ∈ B(ε0) : V (x) > 0}, is called a Control Chetaev
Function (CCF) for the system (2) if for all x ∈ V+,

sup
u∈Rm

{a(x) +B(x)Tu} > 0,

where

a(x) = D−V (x)f(x), B(x) = [D−V (x)G(x)]T .

Such an CCF satisfies the Small Control Property (SCP) if
for each ε > 0 there is a δ > 0 such that, if x ∈ V+ satisfies
|x| < δ, then there is some |u| < ε such that

a(x) +B(x)Tu > 0.

Similarly to CLF case [14], it is possible to conclude that
V : B(ε0)→ R+ is a CCF, if for all x ∈ V+ the property

|B(x)| = 0 =⇒ a(x) > 0

is satisfied. The SCP property for a CCF is equivalent to the
limit condition [1]:

lim
|x|→0

a(x)

|B(x)|
≥ 0.

Obviously, if a CCF V is positive definite (in this case V+

is an open set around the origin) and V̇ > 0 everywhere
in V+, then such a CCF becomes an ALF from [1] (that
is an opposite of CLF from [14]), thus the CCF concept
generalizes those previous results.

It easy to see that if ε0 < +∞ then any continuous control
would be bounded on B(ε0) (very frequently, if excitation of
oscillations is the goal, only local destabilization is needed
[11], [1]), therefore as in [15] a CCF for bounded control
inputs can be introduced. Denote Uk = {u ∈ Rm : |u| ≤ k}
for some k > 0.

Definition 3. A smooth function V : B(ε0) → R, such that
V (0) = 0 and V+ ∩ B(ε) 6= ∅ for any ε ∈ (0, ε0] where
V+ = {x ∈ B(ε0) : V (x) > 0}, is called a CCF for the
system (2) with respect to controls from Uk if for all x ∈ V+,

sup
u∈Uk

{a(x) +B(x)Tu} > 0,



where

a(x) = D−V (x)f(x), B(x) = [D−V (x)G(x)]T .

It is easy to prove that V : B(ε0) → R+ is a CCF with
respect to controls from Uk, if for all x ∈ V+ the properties

|B(x)| = 0 =⇒ a(x) > 0,

a(x) > −k|B(x)|

are satisfied.
In [14] a universal formula for stabilization using CLF has

been proposed, in [1] it has been applied for destabilization
with ALF. In this work below we are going to apply it for
CCF, and CCF with bounded controls using the universal
formula given in [15].

Theorem 2. If for the system (2) there exists a CCF U :
B(ε0)→ R, then the control

u(x) = −φ[a(x), |B(x)|]B(x),

φ(a, b) =

{
a− p
√
|a|p+b2q

b2 if b 6= 0;

0 if b = 0
(3)

for any 2q ≥ p > 1, q > 1 is continuous for all x ∈ V+ and
ensures the system instability in B(ε0).

If furthermore V satisfies the SCP, then the feedback
control (3) is also continuous at the origin.

The control (3) can be designed to be homogeneous for
a homogeneous system (2) under conditions similar to the
ones formulated in [1].

Theorem 3. If for the system (2) there exists a CCF V :
B(ε0) → R with respect to controls from Uk for some k ∈
(0,+∞), then the control

u(x) = −ϕ[a(x), |B(x)|]B(x),

ϕ(a, b) =

 a− p
√
|a|p+b2q

b2(1+ p√1+k−pb2q−p)
if b 6= 0;

0 if b = 0
(4)

for any 2q ≥ p > 1, q > 1 is continuous for all x ∈ V+,
u(x) ∈ Uk for x ∈ V+, and it ensures the system instability
in B(ε0).

If furthermore V satisfies the SCP, then the feedback
control (4) is also continuous at the origin.

V. CONCLUSION

The necessary conditions of instability in terms of exis-
tence a Chetaev function are formulated. The obtained results
are used for extension of the ALF framework from [1], and
the CCF concept is introduced. With the proposed results, the
CCF concept plays a similar role for feedback destabilization
of dynamical systems as CLF has for stabilization. Two
control algorithms are designed, based on the universal
formulas of [15], [14], one is for design of a bounded locally
destabilizing control. The developed approach can be applied
next for characterization of the norm controllability [2].
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control. NY: Springer-Verlag, 1997.

[7] A. Lyapunov, The general problem of the stability of motion. London:
Taylor & Francis, 1992. Translated by A. T. Fuller.

[8] N. Chetaev, The Stability of Motion. New York: Pergamon Press, 1961.
(English translation).

[9] L. Khazin and E. Shnol, Stability of Critical Equilibrium States.
Manchester University Press, 1991.

[10] E. Shnol, “Chetaev function,” Scholarpedia, vol. 2, no. 9, p. 4672,
2007. www.scholarpedia.org/article/Chetaevfunction.

[11] D. Efimov and A. Fradkov, “Oscillatority of nonlinear systems with
static feedback,” SIAM J. Control Optimization, vol. 48, no. 2, pp. 618–
640, 2009.

[12] D. Efimov and W. Perruquetti, “Oscillations conditions in homogenous
systems,” in Proc. IFAC NOLCOS Symp., (Bologna), pp. 1379–1384,
2010.

[13] Y. Lin, E. Sontag, and Y. Wang, “A smooth converse lyapunov theorem
for robust stability,” SIAM J. Control Optimization, vol. 34, pp. 124–
160, 1996.

[14] E. Sontag, “A "universal" construction of arstein’s theorem on non-
linear stabilization,” Systems & Control Letters, vol. 12, pp. 542–550,
1989.

[15] Y. Lin and E. D. Sontag, “A universal formula for stabilization with
bounded controls,” Systems & Control Letters, vol. 16, no. 6, pp. 393–
397, 1991.




