E. Altman, R. El-azouzi, and V. Abramov, Analysis of two competing TCP/IP connections, Performance Evaluation, vol.49, issue.1-4, pp.43-55, 2002.
DOI : 10.1016/S0166-5316(02)00106-2

N. G. Bean, F. P. Kelly, and P. G. Taylor, Braess's paradox in a loss network, Journal of Applied Probability, vol.1, issue.01, pp.155-159, 1997.
DOI : 10.1287/trsc.9.3.183

M. Beckmann, C. B. Mcguire, and C. B. Winsten, Studies in the Economics of Transportation, 1956.

D. Braess, ??ber ein Paradoxon aus der Verkehrsplanung, Unternehmensforschung Operations Research - Recherche Op??rationnelle, vol.8, issue.1, pp.258-268, 1968.
DOI : 10.1007/BF01918335

S. A. Gabriel and D. Bernstein, The Traffic Equilibrium Problem with Nonadditive Path Costs, Transportation Science, vol.31, issue.4, pp.337-348, 1997.
DOI : 10.1287/trsc.31.4.337

S. A. Gabriel and D. Bernstein, Nonadditive Shortest Paths: Subproblems in Multi-Agent Competitive Network Models, Computational & Mathematical Organization Theory, vol.6, issue.1, pp.29-45, 2000.
DOI : 10.1023/A:1009621108971

H. Kameda, E. Altman, T. Kozawa, and Y. Hosokawa, Braess-like paradoxes in distributed computer systems, IEEE Transactions on Automatic Control, vol.45, issue.9, pp.1687-1690, 2000.
DOI : 10.1109/9.880619

Y. A. Korilis, A. A. Lazar, and A. Orda, Avoiding the Braess paradox in non-cooperative networks, Journal of Applied Probability, vol.36, issue.01, pp.211-222, 1999.
DOI : 10.1109/90.251910

A. Orda, R. Rom, and N. Shimkin, Competitive routing in multi-user environments, IEEE/ACM Trans. on Networking, pp.510-521, 1993.

R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, International Journal of Game Theory, vol.2, issue.1, pp.65-67, 1973.
DOI : 10.1007/BF01737559

R. W. Rosenthal, The network equilibrium problem in integers, Networks, vol.54, issue.1, pp.53-59, 1973.
DOI : 10.1002/net.3230030104

J. G. Wardrop, Some theoretical aspects of road traffic research, Engineers, Part II, pp.325-378, 1952.