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Abstract. Estimating the contribution of Antarctica and modelling, thermo-mechanical modelling. We will address
Greenland to sea-level rise is a hot topic in glaciology. Goodthe problem of initial state and parameter estimation. There
estimates rely on our ability to run a precisely calibrated iceexists a wide range of methods to solve this problem, all of
sheet evolution model starting from a reliable initial state.them looking to produce a good fit between the estimated
Data assimilation aims to provide an answer to this problempresent state and the available observations.
by combining the model equations with observations. In this There is a variety of models dealing with ice flow; all of
paper we aim to study a state-of-the-art ensemble Kalmarthem are based on the quasi-static equilibrium equation and
filter (ETKF) to address this problem. This method is imple- consider ice as a viscous fluid with a nonlinear viscosity.
mented and validated in the twin experiments framework forMost models take advantage of the very small aspect ratio of
a shallow ice flowline model of ice dynamics. The results areice sheets and use a thin layer approximation, but they differ
very encouraging, as they show a good convergence of then the order of the approximation. We use here the simplest
ETKF (with localisation and inflation), even for small-sized approximation (shallow ice approximation). Although sim-
ensembles. ple and fast, it preserves the nonlinearity of the system and
is sensitive to the parameters we want to estimate, bedrock
elevation and basal drag.

The Greenland and Antarctic ice sheets are huge ice bod-
1 Introduction ies, more than 1000 km wide with harsh climatic conditions

that limit field observations. We rely consequently on satel-

Antarctica and Greenland account for a significant fractionlite observations that provide a global coverage. The two ma-
of today’s sea-level riseShepherd et 812012. Good esti-  jor characteristics that can be used for our study are surface
mates of their future contribution are therefore crucial to pro-elevation and ice velocities at the ice sheet surface. Although
ducing sea-level change forecasts, as underlinetidyna in this work we use synthetic experiments and generate our
etal.(2013. Producing pertinent estimates of polar ice sheetown observations, we stay as close as possible to the avail-
contribution to sea-level change relies on our ability to run aability, resolution and uncertainties of real observations. Ice
precisely calibrated ice sheet evolution model starting fromsheet surface elevation has been monitored by radar (ERS-1,
a reliable initial state. Calibrating the model means identi-ENVISAT) or laser (ICESat) satellite altimetry for approx-
fying as best we can the unknown parameters of the modeimately 20 years. The spatial resolution depends on the in-
(bedrock topography, basal friction law), and finding a reli- strument but is typically kilometric (smaller along track).
able initial state means of identifying the model variables thatThe measurement errors for these observations are usually
vary in time (ice thickness). small: for instance for the DEM (digital elevation model) of

In this work we will not address calibration of the full Antarctica, 42 % of the map has an RMS smaller than 2m,
comprehensive model. Indeed, this problem covers a widéut RMS can be up to 130 m in mountainous regions; see
range of research fields: numerical analysis, mass-balance
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570 B. Bonan et al.: ETKF for state and parameter estimation in ice sheet modelling

Griggs and Bambeg(2009. Ice velocity is obtained by radar phy and basal drag simultaneously; $gaymond-Pralong
interferometry and maps are available over the major part ofaind Gudmundssa{2011) (using the Bayes theorem) anan
both ice sheets with a kilometric resolutioRi¢not et al, Pelt et al.(2013 (with a simple Picard iteration to reduce
2011for Antarctica,Joughin et a].2010for Greenland). The the observation—model misfit). In the slightly different con-
uncertainty ranges from 1 to 17 m per ye&ignot et al, text of calibrating climatic parameters used by an ice sheet
2011). Beside satellite observations, there are also localiseanodel, Tarasov et al(2012 use a more general approach
measurements of the bedrock topography generally obtainedalled Markov Chain—Monte Carlo using neural networks.
by radar measurements from planes and thus restricted tGontrary to the variational approach or Kalman, this Monte
flight lines. A bedrock topography map has been recentlyCarlo approach solves the Bayes theorem exactly, which is
published gathering all the measurements from any countryhe basis of every DA system. However, this method cannot
(Fretwell et al, 2013. The coverage is however still hetero- be applied in our context due to the too high dimension of
geneous, from closely spaced flight lines in some places tdhe problem:Tarasov et al(2012 needed over 50 000 runs
huge regions with no flight at all. The map comes thus with of their model in order to estimate accurately the statistics of
an associated error map, ranging from 20 m (on measure89 parameters.
points) up to 1000 m (in unobserved areas), and it is worth Variational and Kalman DA methods are equivalent un-
noting that this error map is obtained thanks to the krigingder the condition of linearity, in which they achieve least-
method, with no ice flow consideration. variance linear estimation. If in addition errors are Gaussian,

Data assimilation (DA) covers the methods used to com-they achieve Bayesian estimation. Of course in the frame-
bine model and data in order to estimate initial states or pawork of realistic applications, models are seldom linear and
rameters. There are two main classes of DA algorithms: vari-errors are not Gaussian, so that both methods have different
ational, based on optimal control theory (the prototype beingadvantages and drawbacks, and may compare differently de-
4D-Var), and sequential, based on optimal statistical estimapending on the application. In this paper we made the choice
tion (the prototype being the Kalman filter). DA is widely to start our investigation with a Kalman-based method. The
known in weather and oceanography forecasting, but its inKalman filter (KF) was introduced biKalman (1960 for
troduction in glaciology is fairly recent, in particular for the linear systems. Later on it was extended to nonlinear sys-
initial state estimation problem for sea-level riséacAyeal  tems. Because of the curse of dimensionality the extended
(1992 andMacAyeal (1993 introduced control methods to Kalman filter is not practical in large realistic systems, as
infer basal drag in ice-stream models, using in particular thethe size of the state vector prevents the computation of the
self-adjoint property of such models, leading to many appli-time-evolving covariancegvensen1994) then introduced
cation papersRommelaere and MacAyed 997 Vieli and the ensemble Kalman filter (EnKF), which is a Monte Carlo
Payne 2003, and later for full Stokes model$Aprlighem approximation of the KF that avoids the computation of the
et al, 201Q Jay-Allemand et al.2011). Later on, many covariance matrices. Following the corrected version of the
DA and inverse methods were introduced in glaciology. Thealgorithm byBurgers et al(1998, numerous authors used
Best Linear Unbiased Estimation (BLUE) and Optimal In- the EnKF and proposed improvements and variants.
terpolation (Ol) methods were introduced Agthern (2003 To the best of our knowledge, neither KF nor EnKF has
andBerliner et al.(2008. The Robin inverse method due to ever been used in glaciology, and we propose to implement
Chaabane and Jao(E999 has been introduced bArthern and investigate its performance to tackle the sea-level rise
and Gudmundsso(2010 for ice sheet models, and finally, problem. This paper is organised as follows: in S@ave
Heimbach and BugniofR009 presented the first adjointice give some details about the DA methods, in S8oe de-
sheet model derived automatically. scribe the ice-sheet model and in Sdotve describe our nu-

As the ice surface elevation is pretty well (in terms of ac- merical results. Finally we discuss the results and conclude
curacy and data density) observed by satellite sensing, iniin Sect.5.
tial state estimation focuses on bedrock topography and basal
sliding law estimation. The joint identification of bedrock to-
pography and basal friction law is a difficult problem. In- 2 Methods
deed, different configurations (e.g. a low bed and no sliding
versus a higher bed with sliding) may lead to identical sur-First introduced byEvensen(1994) and later corrected by
face observations. This is why most of the previous worksBurgers et al(1998, the ensemble Kalman filter (EnKF) is
on this subject chose to investigate the basal sliding idena common approach in data assimilation for state and param-
tification only, usually for local modelling (glaciers or ice eter estimation. In the traditional Kalman filter, the state of
streams). Recently, a couple of papers addressed the ice-sheephysical system at a timg is represented by two quan-
initialisation problemArthern and Hindmarst006 with a tities: xx, the augmented state vector of sizewhich con-
BLUE/OI method andsillet-Chaulet et al(2012 with con-  tains an estimation of all variables and parameters we wish to
trol and Robin methods. More recently still, researchers haveestimate, andP;, the error covariance matrix of this estima-
started to investigate coupled inversion of bedrock topogration. The EnKF as a Monte Carlo method approximates both
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)

quantities by the use of an ensembleNefrealisationsy,”, ETKF implementation given bidunt et al.(2007). In order
i =1,..., Ne. The estimation of the extended state vector isto formulate the analysis step, we first define the forecast en-
given by the ensemble mean semble projected in observation space as follows,
o1 e {y<1>f - (xa)f) Lyl — gy (xuve)f)} , (6)
= > ox; 1)

€i=1 and we denot§f the mean of the above ensemble afidhe

associated perturbation matrix. The analysis step then con-

andP; by the ensemble covariance matrix T : d
sists in minimising the following cost function:

1 T Ne—1
Pr = Nz XXk @ Jw) = eTwTw
Lo of i\ 1o _of _yf
with X; = [x,(cl) —Xp, ., x e —fk] the ensemble pertur- T3 (y -y =Y w) R (y -y -y “’)1 @
bation matrix. wherew is a vector of sizeVe. The minimiser of7 is given

EnKF is a two-step algorithm: forecast and analysis.
Quantities produced during the forecast step (analysis step)

are denoted with a superscripfsuperscripf). w?=payf g1 (yo — yf) , (8)
Theforecastconsists in propagating the ensemble using a

numerical model: where
f L a . pa_ (yiTp—1yf _ -1

K0 = M (502, 41 @ P=(Y'RY +we-11) ©)

is the inverse of the Hessian of at the minimum. The en-

with M, a nonlinear model which propagates the state vecsemple covariances after the analysis are given by3qnd
tor from time;_1 to time# (of course, the model does not e ensemble mean by

change the parameters) anﬂ) a sample vector following

—a_ —f | yf
the model error pdf. In this paper we assume a perfect modef- =X +Xw?. (10)
SO that'l;(f) =0. The analysis ensemble perturbation matrix is obtained by
At time 1, observations are available. We denote thgm 12
which is a vector of sizey. The mapping between observa- X*= X ((Ne—DPH'"U, (11)

tions and model state is given by the following relation: whereU is an arbitrary orthogonal matrix which preserves

o _ 1, (x! 4 the ensemble mean. For the sake of simplicity, welkes
Y= (xi) + e @ the identity matrix in the sequel.
with 7, a possibly nonlinear observation operatef, the Using Egs. 10) and (L1) we can then proceed to the next

true extended model state vector apdhe observation error.  forecast step using EcB)
€, is assumed unbiased (zero mean) and Gaussian with th .
covariance matrig;. 5.2 Inflation and ETKF

The aim of theanalysisstep IS o correct the fo_recast €N" EnkF is known for suffering from under-sampling issues (the
semble thanks to the observations. Several versions of EnKEo-caIledcurse of dimensionali}y Two well-known proce-

exist. Here we use a deterministic one Ca”efj the ensemblaures have been developed to correct their symptoms: infla-
trans_form Kalman filter (E_TKF)' In the following, we omit tion and localisation. The former scales up by a factor the
the time index for readability. ensemble perturbation matrix to avoid the underestimation
of the variancesAnderson and Anderspi999. The scal-
ing factor is also known as the forgetting factoFham et al.

The ETKF was first introduced bgishop et al(200). The ~ (1999. In the ETKF formulation oHunt et al.(2007), the
main idea of this formulation is the following: the analysis nflation consists in replacing EcPXby

2.1 ETKF formulation

covariance matrixP? can be written as a transformation of _ - Ne—1 \ 1
the forecast ensemble perturbations as P = <Yf RV 4 — |> . (12)
pa— xfpaxt’, (5)  with p > 1 the inflation factor. It is equivalent to rescafé

~ by /p. If the observation operator is linear, it is equivalent
with P an Ne by Ne matrix. The same idea (in a slightly dif- to rescale the ensemble perturbation matrix. This procedure
ferent formulation) was developed for the SEIK filtB®th@m is very popular due to its simplicity but can only resolve the
1996 Pham et al.1998 Pham 200]). Here we follow the  variance underestimation due to EnKF.

www.nonlin-processes-geophys.net/21/569/2014/ Nonlin. Processes Geophys., 2158892014
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3000F Table 1. List of parameter values involved in the parameterisation
of the surface mass balance. Bgj, is a time-evolving climatic pa-
2000} rameter, its value will be specified for each experiment in Sett.
B
£ Parameter Value
S 1000F
—1
K Ablg —5m.a
s o Accy emal
5 B . N c1 0.115
soc edrock topography Tmelt —6°C
-1000- 1 1 om 1
‘ ‘ ‘ ‘ ‘ A 11000 CM
0 200 400 600 800 1000 1200 1
x axis (in km) y —0.0063°Cm

Fig. 1. Ice sheet geometry: an ice cap of thicknése, 1) lies on
a bedrock (in blue) whose topographyAsoc(x). S(x, t) represents

the surface altitude of the ice sheet. wherer represents the time, and theaxis represents the

latitude.
Ice sheet thicknesH (x, r) is governed by the balance be-
2.3 Localisation and ETKF tween surface mass budget, precipitation or surface melting,

and ice flow that drains ice accumulated in the central parts

Another under-sampling issue of EnKF is the problem of toward the edges of the ice sheet. All these components can
long-range spurious correlations. These can be overcomevolve with time in response to climatic changes and inter-
by the use of localisation. The ETKF configurationHant ~ nal feedbacks. In the context of model initialisation, we will
et al.(2007 does not allow the use of localisation on a fore- focus on ice flow, surface mass balance being assumed as
cast error covariance matrix as kamill et al. (2001 or known.
Houtekamer and Mitchel200]). However, localisation on In this study, we use a parameterisation of surface mass
R is still possible. One way is to perform local analysis by balanceby, as a function of atmospheric temperat@iseThe
assimilating a subset of observations on a given locatin ( values of the different parameters involved in this parame-
et al, 2004. It has been implemented tyunt et al.(2007) terisation are detailed in Table The surface mass balance
and is known as LETKF. This method can lead to disconti-is the sum of accumulation Ace 0 (snowfalls) and Abk O
nuities in the analysis when an observation leaves the sub@melting). These two terms are parameterised as follows:
set of used observations for a given location. To solve this, Ty
Hunt et al.(2007) select a subset of observations and in- ACC = ACCoe (14)
crease error variance for observations close to the boundary
of the subset. It is equivalent for a given location to repRRce  Abl =
with pl_loR, with p; some distance-based correlation matrix 0 else
(such as the one suggested®gspari and Cohri999, the
origin being the given location angddenoting the element-
wise (Hadamard or Schur) product. Note tbatlo R must
be changed for each given location even if it uses the sam
observations as for another location. We use this correcte
version of LETKF for our experiments.

Note that (L)ETKF can produce negative ice thicknesses
In those (rare) cases, we set back ice thickness to zero.

2
AblO (_TS_Tme|t> |f Ts > Tme|t

Tmelt

(15)

Ablation occurs when the temperature exceeds the melting
point, represented b¥nei. The surface temperatufe de-
gends on surface elevation of the ice shgedistance along
{hex axis (representing latitude with= 0 the pole) and cli-
mate temperaturé€ejim, according to the formula:

Ts(x,t) = Fglim+Ax +y S(x,1) (16)

Feim evolves in time; its value will be specified for each ex-
periment in Sect4.1

3 Ice sheet model This parameterisation (values are detailed in Tdblee-
_ . produces qualitatively the typical surface mass balance over
3.1 Basis of ice sheet model an ice sheet and the feedbacks associated with its possible

] . ) _ changes in geometry.
The goal of an ice sheet model is to simulate the evolution |ce flow is gravity driven: it follows the quasi static equi-

of ice thicknessH (x, 1) over a supposedly fixed bedrock to- inrium equation, i.e. the momentum conservation equation
pographyBsod(x) (Fig. 1). The total has a surface elevation j, which the only body force is due to gravity and accelera-

denotedS(x, t), according to tion is negligible.
Incompressibility is assumed for the whole domain. This
S(x,1) = H(x,1) + Bsoc(x), (13)  isaclassical approximation in ice sheet modelling. Although

Nonlin. Processes Geophys., 21, 56882 2014 www.nonlin-processes-geophys.net/21/569/2014/
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at the surface snow slowly densifies in firn and ice, this pro-afford a few century simulations; ségillet-Chaulet et al.

cess is restricted to the top 100 m of the ice sheet (over aboy2012), Larour et al.(2012. All the other ice sheet models

3000 m). Thus, for large-scale modelling, this layer is re- use approximations based on the very small aspect ratio of

placed by an ice equivalent one with density equal to ice denice sheets. Ice sheets are indeed a few kilometres thick and

sity. more than a thousand kilometres wide, so that asymptotic
Ice behaves as a viscous fluid with a nonlinear viscosity.developments are possible. In this work, we will use an ap-

It is usual among glaciologists to use the empirical “Glen” proximation called shallow ice approximation that preserves

flow law (Duval, 1979 with an exponent 3 (see below for the main nonlinearity of the problem, linked to the deforma-

more details). In the following however we will use a poly- tion law, and the dependency on the dragging law coefficient

nomial law associating the Glen flow law and a Newtonianthat is one of the characteristics we want to estimate.

one. This law was suggested biboutry (1993 andCuffey

and Paterso(2010, and can better represent deformation at3-2 Shallow ice approximation (SIA) for a flowline

very low stresses existing for instance in the upper part of the model

ice sheet. Moreover, it prevents infinite viscosity in the case_ . . . . .
of no deformation. It is written as: This approximationKutter, 1983 describes ice deformation

in the vertical plane and allows us to calculate the vertical
: _ 10w n duj\ _ <A12+¢) . 17) profile of horizontal velocity. It is based on an asymptotic
172 ax;  Ax; ) U approach and is vertically integrated. We use here a model,
Winnie, which is a flowline and isothermal version of a 3-D
whereéjj is the train rate tensor component, the veloc-  jce sheet model, GRISLI (sditz et al, 2001, Peyaud et a).
ity in the directioni, 7; is the deviatoric stress component, 2007 Quiquet et al.20129). According to the SIA, ice flow
A andg are the coefficients of, respeciively, the Glen flaw is in the direction of the steepest slope of the surface and
law (» = 3) and the linear (Newtonian) flow law ands the  can pe thus relatively well represented by a flow line follow-
effective stress, or formally the second invariant of the devi-ing that direction. The isothermal assumption allows uniform
atoric stress tensor. deformation coefficientsA and¢ (their values are given in
Boundary conditions at the surface are atmospheric prestap|e2). It is taken as a first step in this study because taking
sure and no tangential stress. At the ice bed interface, a draghermal processes into account would require us to estimate
ging law (usually called sliding law by glaciologists) mustbe j third poorly known parameter that is the geothermal heat
prescribed to derive the tangential stregéalso called basal  fiow. Such a topic is beyond the scope of this study.

drag). ' The vertically averaged horizontal velocity, is given by
The dragging law depends on the substratum, and espe-
cially on whether it is hard-bed or soft-bed (sediment). How- U = Udef+ Usiid- (19)

ever, many of the sliding/dragging laws proposed in glaciol-
ogy can be written as follows (se@uffey and Patersqn

Udet comes from ice deformation in the vertical plane, and

2010: according to the SIA equations and our constitutive equation
' (polynomial) reads as
=KUgy, 18
b slid ( ) o A ( )3 H4 Ry 2 ¢ H2 oS (20)
whereUsjiq is the basal tangential velociti anda are re- def = 5 /8 0x 3”8 ax’

spectively coefficient and exponent of the dragging law and ) ) ) o .
their value depends on the characteristics of the rock—ice in¥herex is the horizontal coordinatg, is ice densityg grav-

terface, basal temperature, sediment thickness, water pre&y, /7 ands are ice thickness and ice sheet surface elevation.
sure, roughness, etc. In this article, we will restrict our work ~ NOt€ that the nonlinearity of the consitutive equation is
to a linear law ¢ = 1). implicitly taken into account by the exponents for surface

Note that when the ice sheet reaches the ocean, ice b&/OP€ and ice thickness. ,
gins to float and forms structures called ice shelves (or float- 1 "€ horizontal velocity at the surfaé& is one of the ob-
ing tongues if they are narrow). Basal drag there is zero and€"ved characteristics and is given by
Eq. (18) is not valid. In this work we will only consider an A 382 ¢ 39S
ice sheet resting on the bedrock (grounded ice sheet). Us= {—— (pg)°H*— — —ngz} — + Usjig- (21)
Associating quasi static equilibrium and viscous behaviour 4 dx 2 dx

leads to the full Stokes equatpns. There is a whqle h|er~|-0 derive the basal velocit§/sig, we assume that basal drag
archy of approaches to. solve th's problem (see for INStance 4 pasal velocity are linked through a linear dragging law
the ISMIP inter-comparison projed®attyn et al.2008. Re- and that the basal shear stregss given by the SIA:

cently, a few ice sheet models were designed to solving rig-

orously the full Stokes problem, but given the numerical cost_ _ S ,
. . T = pgH —— = —B Usiid, (22)
they are usually restricted to a regional scale or can only ox

www.nonlin-processes-geophys.net/21/569/2014/ Nonlin. Processes Geophys., 2158892014



574 B. Bonan et al.: ETKF

Table 2.List of parameter values involved in the computation of ice
velocities.

Parameter Value
Di 910kgnt3
g 9.81ms?
A 2x 107 16pg35-1
P 8.313Palal

whereg is positive and is one of the characteristics we want
to determine. Because this parameter covers several orders
magnitude, we often use=log;q(8).

The previous equation is one example of the sliding laws
described in Eq.18). Although simple, this method repro-

for state and parameter estimation in ice sheet modelling

Finally, we study the impact of smaller ensemble sizes, for
ETKF with inflation and localisation.

We recall here that our problem is to estimate jointly the
ice thicknessH, the bedrock topograph®sec, and the basal
sliding coefficientd = 10*. As this particular problem has
never been studied before with ensemble filtering, this work
is focused on twin experiments, because it will allow quanti-
tative assessment of the method performance.

4.1 Numerical setup

gyvin experiments consist in comparing three model states:
the reference (or true) state, which is used to generate obser-
vations; the background state, which is another model state,
different from the reference; the assimilated state, also called

duces the various types of ice flow found in ice sheets: slowA"2!ysis, resulting from the DA procedure. We can then com-

flow in the central parts where ice deformation is dominan
and fast flow in ice streams for low values@®fSuch a sim-
ple sliding relation cannot reflect the large variety of slid-

ing processes and their nonlinearities, but is sufficient for our

purpose, especially with the isothermal assumptidnef{er
and Brown 2009. Moreover, due to the thin layer approxi-

mations, one should be careful in the interpretation of sharpS ) )
g§etup quite challenging.

horizontal changes in the bedrock topography or basal dra
coefficient.

Finally, the evolution of ice sheet geometry is derived from
the mass conservation equation:

dUH
0x

oH
——~ —p
ot

(23)

t pare the misfit between the assimilation and the reference,

and the misfit between the reference and the background (no
assimilation).

We performed the twin experiments over a 20-year time
window. This is realistic for this problem, as the available
observation records roughly span 20 years. Note that this
mall window size makes our proposed DA experimental

We first explain how to choose the reference state. We set
up the Winnie model with 241 grid points and a space step
Ax =5km, so that the state vect@®H (x), Bsod(x), a(x))
length is 743. The reference run is initialisedr at 0, with
the ice thicknesg{ and bedrock topograph®sec presented
in Fig. 2. This ice thickness is chosen as the stable state for
a constant climate forcing/tim = 8°C in Eq. 15). In prac-

In our model, mass conservation is the only time-dependentice, it is produced from a very long (50 000 years) model

equation andH is the only prognostic variable. Ice veloci-

run, starting fromd = 0. Also atr = 0, the sliding parame-

ties are diagnostic (completely determined by the ice sheefer coefficientg3(x) = 107 are defined as in Fig.

geometry) because acceleration terms are neglected.
3.3 Numerics

The velocity field is obtained analytically from Eqd9j,
(20), and @2) as a function of ice thickness and surface slope.
The mass conservation equati@3)is solved by a finite dif-
ference method with a staggered regular grid, velocities an
slopes grid points are taken at the midpoint between thick
ness grid points. Because velocity is strongly dependent o
the ice sheet geometry, the time scheme is semi-implicit; se
Hindmarsh(2001). We use for every experiment a fixed time
step of 0.01 year.

4 Numerical results

With this reference initial state, we now impose a linear
climate change (+0.2C for 20 years, s@jim(¢) = 8+0.01¢
with 7 in years) and we perform a 20-year model run in or-
der to get the reference state over the assimilation window.
Note that after 20 years the ice thickness is very similar to
the initial one: the dynamics, highly nonlinear, are also very

élow.

We then use the reference state to generate synthetic ob-
r§,ervations. We choos&r = 1 year as a realistic observation
interval, therefore our assimilation experiments will have
0 observation times, and thus 20 analysis steps. Every year,
we observe the surface elevatiSrand the surface velocity
Us at each grid point (we detailed the reference surface ve-
locity profile with its sliding and deformation components
in Fig. 4). We also observe the bedrock topography every

year and every 30 grid points. To simulate observation errors,

We now present our numerical results. This section is dividedwe add noise to these (perfect) observations. More precisely,
into four paragraphs: firstly we present the numerical setupve add a Gaussian white noise to each observation indepen-
of the various experiments. Secondly we explain how to builddently, with realistic standard deviations: 2 m for surface ele-
the initial ensemble members. Thirdly we present the prelim-vation, 3myear? for surface velocity and 20 m for bedrock
inary results obtained with the ETKF and a large ensembletopography.

Nonlin. Processes Geophys., 21, 56882 2014 www.nonlin-processes-geophys.net/21/569/2014/
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3000 1000
2000 _ 500
T 5
< H
< 1000 £
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>
-500 sliding component
~1000 » deformation component
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Fig. 2. Ice sheet geometry for the reference and background statedzig. 4. Ice velocity at the surface of the ice sheet for the reference
Thex axis represents the horizontal extent of the ice sheet (in km).state, in metres per year, as a function of the ice sheet extdihie
The y axis is the elevation in metres from the sea level. The refer-total surface velocity/s is represented in red, its sliding component
ence bedrock topography is in blue, the background bedrock is iUgjig is in orange crosses, its deformation componégges with
green crosses. Reference and background surface altitude are idecyan x (we recall thal/s = Usjig + Us def)-

tical, in red.

frameworks: indeed, the state-of-the-art a priori bedrock to-
pography BedmapZfetwell et al, 2013 is produced using
surface altitude observations (as well as all available bedrock
measurements).

Now let us describe how to build initial ensemble mem-
bers. Forg = 10¢, we first generate an ensemblexgf) pa-
rameters drawn from a Gaussian distribution with a given co-
variance matrix (a squared exponential covariance function).
Then we transform this ensemblecwinto an ensemble ¢f.

‘ ‘ : : ‘ Then we generate an ensemble of bedrock topographies

0 200 400 600 800 1000 1200 according to a Gaussian distribution, whose mean is the

x axis (in km) . .. . .

background and whose covariance matrix is consistent with

Fig. 3. Basal sliding paramete(x) as a function of the ice sheet Observation statistics. The covariance matrix requires two

extentx, for the reference state (solid blue) and the backgroundingredients: the variances and a correlation matrix, accord-
(green crosses), in log scale. ing to the formulaB = XCX, where X is the square root
of the diagonal matrix of variances, a@lis a correlation

matrix. Where bedrock topography observations are avail-

Every DA experiment presented in this section uses theable, the variance is set to the observation variance (20 m in
same background state (see Figsand3) as an initial en-  standard deviation). Where there is no ice, the variance is
semble mean. The next section describes how to build theet to the surface altitude observation variance (2m in stan-
ensemble from the background state. The same process hdard deviation). Elsewhere the variance increases with the
been used to produce the background state and parametetistance to the closest observation (bedrock or surface) avail-

‘ + background § —reference 8

from the reference. able. Figures presents the standard deviations that form the
diagonal ofX. At worst the standard deviation is equal to
4.2 Initial ensembles 320 m, which is accurate compared to available real uncer-

tainty estimation orBsoc.

As we said before, the initial ensemble mean is set to the For the correlation matrix, we assume that the correla-
background state. Before we describe the procedure, we hawen of bedrock topography between two grid points only de-
to acknowledge that some observations were used twicepends on distance (isotropy). Classically a Gaussian function
once to build initial ensembles (i.e. as a priori information), is taken for the correlation function. However, we choose a
and another time in the DA system (i.e. as observations). Thisum of two Gaussian functions (see F).as using only one
violates a crucial hypothesis required by Kalman-based fil-Gaussian function produced too smooth or too rough bedrock
ters: the independence between the a priori estimation antbpographies. Indeed, this combination allows us to ensure
the observations. However, this is a characteristic of realistidhe smoothness of simulated bedrock topographies at a large
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350 Initial ice sheet ensemble (Ne = 50)
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Fig. 5. Standard deviations (in metres) for the matlixused to  Fig. 7. Example of an initial ice sheet ensemble (50 members):

generate the initial bedrock topography ensembles, as a function dfedrock topographieBsod(x) and surface elevatiofi(x) as func-
the extentr. Local minimums correspond to either “no ice” points tions of the horizontal distance

(close to the boundaries of the domain) or observation points.

Q. ;
[ + large scale component 4.3 First results with a large size of ensemble
+ O short scale component
0.8¢ . + correlation function
. We first perform twin experiments with a large ensemble
0.6/ . , (size Ne = 1000) compared to the state vector dimension,
+ in order to validate our ETKF approach, without having to
0.4k * | deal immediately with under-sampling issues. We therefore
", run the ETKF without inflation or localisation. The bedrock
* topography obtained after 20 years is presented in FEgs.
0.260 * b . . T
°, * (mean topography with or without assimilation) a®dab-
Coga "+++*M“MMMMMMMM solute difference from the reference with or without assimi-
% 50 100 150 200 lation). This clearly shows that the final results on ice thick-

X axis (in km) ness and bedrock topography are very accurate, as the aver-

Fig. 6. Correlation function (in red crosses) used for the generation@d€ RMS error for bedrock topography has decreased from

of initial bedrock topography ensembles. This is a combination 0of207.5 to 45.9m and the maximum standard deviation from

two Gaussian functions: one to capture large-scale behaviour (0r671.6 to 150.5m. The average RMS error for ice thickness

ange x) and one for short-scale behaviour (cyan circles). has also decreased from 207.5 to 45.5m and the maximum
absolute difference from 671.6 to 150.5 m.

Figure10 presents the results for tifeparameter. We can
scale and their slight roughness at shorter scales. This besee that the accuracy after assimilation is quite good at the
haviour seems to produce realistic bedrock topographies. edges of the ice sheet and worse in the centre, wheie

We now have an ensemble of bedrock topographies. Wearge, and also where there is no ice. However, poor results
then generate an ensemble of surface elevations according h largep are not meaningful. Indeed, we are mostly inter-
a Gaussian distribution. As before, its mean is the true surested in recovering the sliding component of the velocity, and
face elevation (from the reference run) and its covariance majt is well known among glaciologists that its sensitivity to

trix is consistent with surface elevation observation statisticsyariations ofg for large is very low: 8 > 10° leads to zero

(white noise with a standard deviation of 2m). To obtain thegjiding velocity in any cases, so that=10° or 10’ does

initial ensemble for ice thiCkness, we subtract the ensemble]ot make any difference. S|m||ar|y2 in areas where there

of bedrock topography from the ensemble of surface elevais no ice is meaningless. This is confirmed in Fig, which

tion: H = § — Bsoc Then we correct this new ensemble to shows the sliding counterpart of the surface velocity: we can

avoid negative ice thicknesses (we just set them back to zerokee that the analysis is much closer to the reference than the

Finally we run the model for each ensemble member duringhackground. Precisely, Fig2 shows the absolute difference

1 year in order to obtain more physically balanced ice sheet$rom the reference on surface sliding velocity with or without

and we perform a multiplicative rescaling on the producedassimilation, and we can see that it is much reduced with as-

ensemble so that its mean remains equal to the backgroundimilation. Howeverlsjiq is poorly retrieved at some points

An example of 50 ensemble members is presented in/Fig.  aroundx = 1000 km. This corresponds to a zone wh fds
much smaller, which is the onset of the sliding. At this point
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5500 ‘ ETKF resul‘t for ice shee‘t (ensemble ?lze =1000) ‘ N ETKF result for § (ensemble size = 1000)
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Fig. 8. Ice sheet geometries after 20 years, with the 1000-member
ETKF. The analysis bedrock topography (final mean ensemble inFig. 10.8 parameter after 20 years of the 1000-member ETKF. The
purple x) is compared to the background (green crosses) and the refnalysis (purple x) is compared to the background (green crosses)
erence (blue). The analysis result and the reference are really closand the reference (blue). Valuesphbove 18 are all equivalent in
except for around 150 km from the origin (see also Ridor de- terms of sliding velocity. Similarlyg is meaningless where there is
tailed results). The surface elevation is accurately observed (in red)jo ice (close to boundaries).
so that background, reference and analysis are similar.

ETKF result for sliding velocities (ensemble size = 1000)

Absolute difference from the reference for bedrock topography (ensemble size = 1000) 3000 T T T T T
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+ background * final analysis | 2500~ * 1
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Fig. 9. Absolute difference between analysis and reference (in pur-Fig. 11. Sliding componentgjiq of the surface velocity after 20

ple x) after 20 years of the 1000-member ETKF is compared toyears of the 1000-member ETKF. The analysis mean (purple x)
the absolute difference between background and reference (in greéa compared to the background (green crosses) and the reference
crosses) for bedrock topography. The average RMS error is defblue).

creased from 207.5 m for the background to 45.9 m for the analysis

and the maximum absolute difference from 671.6 to 150.5m.
Absolute difference from reference for sliding velocity (ensemble size = 1000)

2500 T . T : :
+ background * final analysis |

the dynamics are close to being discontinuous, and therefor§>2°°°7 ' 1
highly nonlinear. £

We then apply a slight inflation of 1.01 to the 1000- §'* . ]
member ETKF. Figurd 3 (to be compared to Fid) shows &
the improved results for the ice sheet geometry and Hg. s | ]
(to be compared to Fid.2) for the sliding velocity. The im- § # 5 . #
provements due to inflation are particularly pronounced in® %%, % & tu a0 ]
areas where sliding and deformation are both predominan w‘h%—-:k o ;E f‘x‘«. .
and the dynamics highly nonlinear. 0 200 400 600 800 1000 1200

x axis (in km)

Fig. 12. Absolute difference between final analysis mean (purple x)
or background (green crosses) and reference sliding component of
surface velocity after 20 years of the 1000-member ETKF.
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Absolute difference from reference for bed. topo. (ensemble size = 1000 + inflation 1.01) ETKF result for ice sheet (ensemble size = 100)
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Fig. 13.Absolute difference between analysis and reference (in pur-_ )
ple x) after 20 years of the 1000-member ETKF with a slight infla- Fi9- 15. Bedrock topography after 20 years, with the 100-member
tion of 1.01 is compared to the absolute difference between backETKF (no inflation, no localisation). The analysis (final mean en-
ground and reference (in green crosses) for bedrock topographyp€emble in purple x) is compared to the background (green crosses)
The average RMS error (14.0 m) and the maximum absolute differ-and the reference (blue). RMS error increases from 207.5m for the
ence (47.8 m) are improved compared to the result obtained withoupackground state to 302.4 m for the final analysis step and the max-
inflation. imal absolute difference from 671.6 to 1093.7 m.

LETKEF results for ice sheet (ensemble size = 100, 50, 30)
T T

Absolute difference from reference for sliding velocity (size = 1000, infla 1.01 3500 T T —
reference
800 ‘ : _
+ background * final analysis | 3000 background
| # N —final anal. (100 m.)
_T00r <, + * 2500 -~ -final anal. (50 m.)
5 + e final anal. (30 m.)
'E 600 -+ ++ 2000 ——observed surface
£ + N E
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) ) ) ) Fig. 16.Bedrock topography after 20 years of the LETKF with in-
Fig. 14.Absolute difference between final analysis mean (purple X) fiation. The background (green) is compared to the reference (blue)

or background (green crosses) and reference sliding component gfnd the analyses for various ensemble sizes: 100 members (purple),
surface velocity after 20 years of the 1000-member ETKF with a50 members (cyan) and 30 members (orange). RMS error evolution
slight inflation of 1.01. is synthesised in Tabf& See also Figl7 for detailed results.

207.5 m for the background state to 302.4 m for the final anal-
ysis step, which is a 50 % increase.

The results obtained with a large ensemble are satisfying. We then use |nflat|'on, as we did W'th_ 1000 .mem_bers.
Nevertheless we will not be able to perform such experiment@eSt results are obtained in that case \_N'th an inflation of
with a full 3-D large-scale ice sheet model. Indeed, in thatl'lo' C(_)mpared to the results without inflation, RMS er-
case the state vector dimension is larger than 100 000, angP's aré |mproveid to 121.2_m_ for the b(_adrock t(_)pography and
it would be impossible to use an ensemble that large. With®© 235-4myear= for the sliding velocity; maximum abso-
this remark in mind we now perform ETKF experiments lute differences from the reference are als_o improved (see
with smaller ensembles: 100, 50, and 30. Without Iocalisa—Table?’)' Howe.ver,' thqse results are still quite poor. In such
tion and/or inflation the ETKF is known for its divergence for a C?UteXt Iocallsat!on IS mandatory. Consequently, for the re-
small ensembles. To check this fact, we perform one experma'n'n_g pa_rt of this sec_tlon_, we use LETKF with manually
iment with 100 members, without localisation or inflation. tuned inflation and localisation.

Figure 15 presents the final analysed bedrock topography,

which is clearly degraded with respect to the background.

Actually, RMS error on bedrock topography increases from

4.4 Dealing with small sizes of ensemble
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Absolute difference from reference for bedrock topography (ensemble size = 100, 50, 30) LETKEF results for sliding velocity (ensemble size = 100, 50, 30)
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Fig. 17. Absolute difference between results and reference for the _. - .
bedrock topography after 20 years of the LETKF with inflation. The 719- 18- Sliding componenUsig of the surface velocity after 20

background (green) is compared to the analyses for various ensery€a'S Of the LETKF with inflation. The mean of the final analysis

ble sizes: 100 members (purple), 50 members (cyan), and 30 merﬁa_nsemble is compared to the background (green) and the reference

bers (orange). RMS error evolution is synthesised in Table (blue), for various ensemble sizes: 100 members (purple), 50 mem-
bers (cyan), and 30 members (orange). Localisation and inflation

parameters are described in TaBleSee also Figl9 for detailed

Let us recall briefly how localisation is performed. The "SUlts:

observation error covariance matfxis modified into,of1 o

Absolute difference from reference for sliding velocity (ensemble size = 100, 50, 30)

R, with p; some distance-based correlation mattagpari 2500 : : : —_——

and Cohn1999. The distancé must be tuned manually in — final g:&ﬁ'."(wo m.)
. . = L - - - final anal. (50 m)

order to achieve good results. It corresponds to the maximaz 2e00 finel anal, (30 mJ

distance between a given grid point and the observations use ¢

in analysis at this point. 3
We performed numerous experiments in order to deter-

mine by hand the begtand the best inflation parameter for

each ensemble. We chose the bedrock topography RMS e 2

ror as a score to measure the performance of inflation ani so0

localisation. Regarding localisation, the best results were ob ks J ) W P

tained with/ between 1A x (ensemble size 30) and 24 % 200 400 600 T T

(ensembles size 50 and 100), so that this distariseuite X axis (inkm)

insensitive to ensemble sizes. In contrast, the optimal valugsg. 19. Absolute difference between results and reference for the

for the inflation parameter proved to be much more sensitivesiiding componentgjiq of the surface velocity after 20 years of

to ensemble sizes (ranging from 0.98 to 1.14). the LETKF with inflation. The background (green) is compared
Table3 presents the RMS error and maximal absolute dif- to the analyses for various ensemble sizes: 100 members (purple),

ference from the reference fBgocandUy)q for the optimally 50 members (cyan), and 30 members (orange). RMS error evolution

tuned LETFK with 30, 50, and 100 members, as well as thelS Synthesised in Tabl

ETKF for 100 and 1000 members. We can see that despite the

small ensemble sizes the results are pretty good. FiduGes _ . .

and 17 present the bedrock topography and its absolute dif- We also performed LETFK (with inflation) experiments

ference from the reference with 30-. 50-. and 100-membetVith smallerensembles (sizes 10 and 20), but the results were

ensembles and confirm the good performance of the filters\F’lery dissatisfying because of filter divergence (not shown
ere)

As before, the performance ¢hitself is not significant, so
we show only results on the sliding velocity. Figdi&@shows
the sliding velocity, and Figl9 presents the absolute differ- 5 conclusions and further directions

ence from the reference for the sliding velocities. As pre-

viously, these figures enlighten two different regimes. First,|n this article, we developed an ensemble transform Kalman
where the ice is either grounded or in full sliding the filters filter (Hunt et al, 2007 in order to estimate jointly the
perform quite well. Second, where the ice just starts to slidebedrock topography, the ice thickness and the basal sliding
(where the proportion between the sliding and deformationparameter of an ice sheet. The originality of this work is
counterparts of the velocity changes) the filters fail and thethe application of an EnKF approach in ice sheet modelling.
RMS is larger, as already noticed in the case of the 1000We performed twin experiments with a flowline simplified
member ETKF without inflation. ice sheet model using the shallow ice approximation and a

-
al
o
S
T

te difference
o
(=]
o
o
T
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Table 3. Summary of best LETKF + inflation results in term of RMS and maximal absolute difference and comparison with standard ETKF
results.

Experiment Size of ensemble Ldc. Inflation RMSEBsoc Max. errorBsoc  RMSEU,  Max. errorUp
(m) (m) (myear?) (myeart)
Background - - - 207.5 671.6 238.1 737.1
ETKF 1000 - - 459 150.5 237.9 2130.0
ETKF + inflation 1000 - 1.01 14.0 47.8 62.2 383.3
ETKF 100 - - 302.4 1093.7 347.5 1895.6
ETKF + inflation 100 - 1.10 121.2 362.7 2354 1556.1
LETKF + inflation 100 24 x 1.02 29.9 111.2 158.1 1453.9
LETKF + inflation 50 23Nx 1.14 48.8 151.1 188.0 1691.2
LETKF + inflation 30 16\ x 0.98 59.7 205.5 214.5 2120.6

sliding law for basal velocities. Every experiment used sur-Arthern, R. J.: Optimal estimation of changes in the mass of ice
face elevation and surface velocity observations all over the sheets, J. Geophys. Res., 108, 6007 1dbt029/2003JF000021
ice sheet and a couple of observations of bedrock topography. 2003.

First we successfully tested our DA approach with a |argeArthern, R. J._and Gudmun_dsson, G. H. Initialization of icg-sheet
ensemble to validate the use of ETKFE. Then we tried with forecasts viewed as an inverse Robin problem, J. Glaciol., 56,
smaller ensembles. In those cases, localisation and ianatioR 527-533, 2010.

are mandatory. Obtained performances were qood even forrthern, R. J. and Hindmarsh, R. C. A.: Determining the contribu-
Y. . P 9 tion of Antarctica to sea-level rise using data assimilation meth-
ensembles with a size as small as 30.

"o - ) ods, Philos. T. Roy. Soc. A, 364, 1841-1865, 2006.
However, localisation and inflation were manually tuned. geyliner, L., Jezek, K., Cressie, N., Kim, Y., Lam, C. Q., and

Localisation distance was not very sensitive to ensemble size van der Veen, C. J.: Modeling dynamic controls on ice streams:
but inflation was. In order to avoid the manual tuning of op-  a Bayesian statistical approach, J. Glaciol., 54, 705714, 2008.

timal inflation parameters, we could use online estimation.Bishop, C. H., Etherton, B. J., and Majumdar, S. J.: Adaptive Sam-
This is a growing interest in the DA community. Some works  pling with the Ensemble Transform Kalman Filter. Part I: Theo-

such asBocquet(2011) or Bocquet and Sako(2012 pro- retical Aspects, Mon. Weather Rev., 129, 420-436, 2001.

vided convincing theoretical arguments for the use of infla-Bocquet, M.: Ensemble Kalman filtering without the intrinsic
tion and its automatic computation. need for inflation, Nonlin. Processes Geophys., 18, 735-750,

. A doi:10.5194/npg-18-735-2012011.
Fmallly, results shown here arg prellmlnary, as we uSGdBocquet, M. and Sakov, P.: Combining inflation-free and iterative
a flowline model. The logical choice to improve the model

. . . ensemble Kalman filters for strongly nonlinear systems, Non-
complexity would be to use a hybrid shallow ice—shallow .. p,ocesses Geophys., 19, 383-399, iE194/npg-19-383-
shelf model as in GRISLIKitz et al, 2001).

2012 2012.
Bueler, E. and Brown, J.: Shallow shelf approximation as a “sliding
law” in a thermomechanically coupled ice sheet model, J. Geo-
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