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Abstract. Estimating the contribution of Antarctica and
Greenland to sea-level rise is a hot topic in glaciology. Good
estimates rely on our ability to run a precisely calibrated ice
sheet evolution model starting from a reliable initial state.
Data assimilation aims to provide an answer to this problem
by combining the model equations with observations. In this
paper we aim to study a state-of-the-art ensemble Kalman
filter (ETKF) to address this problem. This method is imple-
mented and validated in the twin experiments framework for
a shallow ice flowline model of ice dynamics. The results are
very encouraging, as they show a good convergence of the
ETKF (with localisation and inflation), even for small-sized
ensembles.

1 Introduction

Antarctica and Greenland account for a significant fraction
of today’s sea-level rise (Shepherd et al., 2012). Good esti-
mates of their future contribution are therefore crucial to pro-
ducing sea-level change forecasts, as underlined byHanna
et al.(2013). Producing pertinent estimates of polar ice sheet
contribution to sea-level change relies on our ability to run a
precisely calibrated ice sheet evolution model starting from
a reliable initial state. Calibrating the model means identi-
fying as best we can the unknown parameters of the model
(bedrock topography, basal friction law), and finding a reli-
able initial state means of identifying the model variables that
vary in time (ice thickness).

In this work we will not address calibration of the full
comprehensive model. Indeed, this problem covers a wide
range of research fields: numerical analysis, mass-balance

modelling, thermo-mechanical modelling. We will address
the problem of initial state and parameter estimation. There
exists a wide range of methods to solve this problem, all of
them looking to produce a good fit between the estimated
present state and the available observations.

There is a variety of models dealing with ice flow; all of
them are based on the quasi-static equilibrium equation and
consider ice as a viscous fluid with a nonlinear viscosity.
Most models take advantage of the very small aspect ratio of
ice sheets and use a thin layer approximation, but they differ
on the order of the approximation. We use here the simplest
approximation (shallow ice approximation). Although sim-
ple and fast, it preserves the nonlinearity of the system and
is sensitive to the parameters we want to estimate, bedrock
elevation and basal drag.

The Greenland and Antarctic ice sheets are huge ice bod-
ies, more than 1000 km wide with harsh climatic conditions
that limit field observations. We rely consequently on satel-
lite observations that provide a global coverage. The two ma-
jor characteristics that can be used for our study are surface
elevation and ice velocities at the ice sheet surface. Although
in this work we use synthetic experiments and generate our
own observations, we stay as close as possible to the avail-
ability, resolution and uncertainties of real observations. Ice
sheet surface elevation has been monitored by radar (ERS-1,
ENVISAT) or laser (ICESat) satellite altimetry for approx-
imately 20 years. The spatial resolution depends on the in-
strument but is typically kilometric (smaller along track).
The measurement errors for these observations are usually
small: for instance for the DEM (digital elevation model) of
Antarctica, 42 % of the map has an RMS smaller than 2 m,
but RMS can be up to 130 m in mountainous regions; see
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Griggs and Bamber(2009). Ice velocity is obtained by radar
interferometry and maps are available over the major part of
both ice sheets with a kilometric resolution (Rignot et al.,
2011for Antarctica,Joughin et al., 2010for Greenland). The
uncertainty ranges from 1 to 17 m per year (Rignot et al.,
2011). Beside satellite observations, there are also localised
measurements of the bedrock topography generally obtained
by radar measurements from planes and thus restricted to
flight lines. A bedrock topography map has been recently
published gathering all the measurements from any country
(Fretwell et al., 2013). The coverage is however still hetero-
geneous, from closely spaced flight lines in some places to
huge regions with no flight at all. The map comes thus with
an associated error map, ranging from 20 m (on measured
points) up to 1000 m (in unobserved areas), and it is worth
noting that this error map is obtained thanks to the kriging
method, with no ice flow consideration.

Data assimilation (DA) covers the methods used to com-
bine model and data in order to estimate initial states or pa-
rameters. There are two main classes of DA algorithms: vari-
ational, based on optimal control theory (the prototype being
4D-Var), and sequential, based on optimal statistical estima-
tion (the prototype being the Kalman filter). DA is widely
known in weather and oceanography forecasting, but its in-
troduction in glaciology is fairly recent, in particular for the
initial state estimation problem for sea-level rise.MacAyeal
(1992) andMacAyeal(1993) introduced control methods to
infer basal drag in ice-stream models, using in particular the
self-adjoint property of such models, leading to many appli-
cation papers (Rommelaere and MacAyeal, 1997; Vieli and
Payne, 2003), and later for full Stokes models (Morlighem
et al., 2010; Jay-Allemand et al., 2011). Later on, many
DA and inverse methods were introduced in glaciology. The
Best Linear Unbiased Estimation (BLUE) and Optimal In-
terpolation (OI) methods were introduced byArthern(2003)
andBerliner et al.(2008). The Robin inverse method due to
Chaabane and Jaoua(1999) has been introduced byArthern
and Gudmundsson(2010) for ice sheet models, and finally,
Heimbach and Bugnion(2009) presented the first adjoint ice
sheet model derived automatically.

As the ice surface elevation is pretty well (in terms of ac-
curacy and data density) observed by satellite sensing, ini-
tial state estimation focuses on bedrock topography and basal
sliding law estimation. The joint identification of bedrock to-
pography and basal friction law is a difficult problem. In-
deed, different configurations (e.g. a low bed and no sliding
versus a higher bed with sliding) may lead to identical sur-
face observations. This is why most of the previous works
on this subject chose to investigate the basal sliding iden-
tification only, usually for local modelling (glaciers or ice
streams). Recently, a couple of papers addressed the ice-sheet
initialisation problem:Arthern and Hindmarsh(2006) with a
BLUE/OI method andGillet-Chaulet et al.(2012) with con-
trol and Robin methods. More recently still, researchers have
started to investigate coupled inversion of bedrock topogra-

phy and basal drag simultaneously; seeRaymond-Pralong
and Gudmundsson(2011) (using the Bayes theorem) andvan
Pelt et al.(2013) (with a simple Picard iteration to reduce
the observation–model misfit). In the slightly different con-
text of calibrating climatic parameters used by an ice sheet
model,Tarasov et al.(2012) use a more general approach
called Markov Chain–Monte Carlo using neural networks.
Contrary to the variational approach or Kalman, this Monte
Carlo approach solves the Bayes theorem exactly, which is
the basis of every DA system. However, this method cannot
be applied in our context due to the too high dimension of
the problem:Tarasov et al.(2012) needed over 50 000 runs
of their model in order to estimate accurately the statistics of
39 parameters.

Variational and Kalman DA methods are equivalent un-
der the condition of linearity, in which they achieve least-
variance linear estimation. If in addition errors are Gaussian,
they achieve Bayesian estimation. Of course in the frame-
work of realistic applications, models are seldom linear and
errors are not Gaussian, so that both methods have different
advantages and drawbacks, and may compare differently de-
pending on the application. In this paper we made the choice
to start our investigation with a Kalman-based method. The
Kalman filter (KF) was introduced byKalman (1960) for
linear systems. Later on it was extended to nonlinear sys-
tems. Because of the curse of dimensionality the extended
Kalman filter is not practical in large realistic systems, as
the size of the state vector prevents the computation of the
time-evolving covariances.Evensen(1994) then introduced
the ensemble Kalman filter (EnKF), which is a Monte Carlo
approximation of the KF that avoids the computation of the
covariance matrices. Following the corrected version of the
algorithm byBurgers et al.(1998), numerous authors used
the EnKF and proposed improvements and variants.

To the best of our knowledge, neither KF nor EnKF has
ever been used in glaciology, and we propose to implement
and investigate its performance to tackle the sea-level rise
problem. This paper is organised as follows: in Sect.2 we
give some details about the DA methods, in Sect.3 we de-
scribe the ice-sheet model and in Sect.4 we describe our nu-
merical results. Finally we discuss the results and conclude
in Sect.5.

2 Methods

First introduced byEvensen(1994) and later corrected by
Burgers et al.(1998), the ensemble Kalman filter (EnKF) is
a common approach in data assimilation for state and param-
eter estimation. In the traditional Kalman filter, the state of
a physical system at a timetk is represented by two quan-
tities: xk, the augmented state vector of sizenx which con-
tains an estimation of all variables and parameters we wish to
estimate, andPk, the error covariance matrix of this estima-
tion. The EnKF as a Monte Carlo method approximates both
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quantities by the use of an ensemble ofNe realisationsx(i)
k ,

i = 1, . . . ,Ne. The estimation of the extended state vector is
given by the ensemble mean

xk =
1

Ne

Ne∑
i=1

x
(i)
k (1)

andPk by the ensemble covariance matrix

Pk =
1

Ne− 1
XkXk

T , (2)

with Xk =

[
x

(1)
k − xk, . . . ,x

(Ne)
k − xk

]
the ensemble pertur-

bation matrix.
EnKF is a two-step algorithm: forecast and analysis.

Quantities produced during the forecast step (analysis step)
are denoted with a superscriptf (superscripta).

The forecastconsists in propagating the ensemble using a
numerical model:

x
(i)
k

f
=Mk

(
x

(i)
k−1

a)
+ η

(i)
k , (3)

withMk a nonlinear model which propagates the state vec-
tor from timetk−1 to time tk (of course, the model does not
change the parameters) andη

(i)
k a sample vector following

the model error pdf. In this paper we assume a perfect model
so thatη(i)

k = 0.
At time tk observations are available. We denote themyo

k,
which is a vector of sizeny. The mapping between observa-
tions and model state is given by the following relation:

yo
k =Hk

(
xt

k

)
+ εk (4)

with Hk a possibly nonlinear observation operator,xt
k the

true extended model state vector andεk the observation error.
εk is assumed unbiased (zero mean) and Gaussian with the
covariance matrixRk.

The aim of theanalysisstep is to correct the forecast en-
semble thanks to the observations. Several versions of EnKF
exist. Here we use a deterministic one called the ensemble
transform Kalman filter (ETKF). In the following, we omit
the time indexk for readability.

2.1 ETKF formulation

The ETKF was first introduced byBishop et al.(2001). The
main idea of this formulation is the following: the analysis
covariance matrixPa can be written as a transformation of
the forecast ensemble perturbations as

Pa
= XfP̃aXfT , (5)

with P̃a anNe by Ne matrix. The same idea (in a slightly dif-
ferent formulation) was developed for the SEIK filter (Pham,
1996; Pham et al., 1998; Pham, 2001). Here we follow the

ETKF implementation given byHunt et al.(2007). In order
to formulate the analysis step, we first define the forecast en-
semble projected in observation space as follows,{
y(1)f

=H
(
x(1)f

)
, . . . ,y(Ne)f

=H
(
x(Ne)f

)}
, (6)

and we denoteyf the mean of the above ensemble andYf the
associated perturbation matrix. The analysis step then con-
sists in minimising the following cost function:

J (w) =
Ne− 1

2
wT w

+
1

2

(
yo

− yf
− Yfw

)T

R−1
(
yo

− yf
− Yfw

)
, (7)

wherew is a vector of sizeNe. The minimiser ofJ is given
by

wa
= P̃aYfT R−1

(
yo

− yf
)
, (8)

where

P̃a
=

(
YfT R−1Yf

+ (Ne− 1) I
)−1

(9)

is the inverse of the Hessian ofJ at the minimum. The en-
semble covariances after the analysis are given by Eq. (5) and
the ensemble mean by

xa
= xf

+ Xfwa. (10)

The analysis ensemble perturbation matrix is obtained by

Xa
= Xf ((Ne− 1) P̃a)1/2

U, (11)

whereU is an arbitrary orthogonal matrix which preserves
the ensemble mean. For the sake of simplicity, we setU as
the identity matrix in the sequel.

Using Eqs. (10) and (11) we can then proceed to the next
forecast step using Eq. (3).

2.2 Inflation and ETKF

EnKF is known for suffering from under-sampling issues (the
so-calledcurse of dimensionality). Two well-known proce-
dures have been developed to correct their symptoms: infla-
tion and localisation. The former scales up by a factor the
ensemble perturbation matrix to avoid the underestimation
of the variances (Anderson and Anderson, 1999). The scal-
ing factor is also known as the forgetting factor inPham et al.
(1996). In the ETKF formulation ofHunt et al.(2007), the
inflation consists in replacing Eq. (9) by

P̃a
=

(
YfT R−1Yf

+
Ne− 1

ρ
I
)−1

, (12)

with ρ > 1 the inflation factor. It is equivalent to rescaleYf

by
√

ρ. If the observation operator is linear, it is equivalent
to rescale the ensemble perturbation matrix. This procedure
is very popular due to its simplicity but can only resolve the
variance underestimation due to EnKF.
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Fig. 1. Ice sheet geometry: an ice cap of thicknessH(x, t) lies on
a bedrock (in blue) whose topography isBsoc(x). S(x, t) represents
the surface altitude of the ice sheet.

2.3 Localisation and ETKF

Another under-sampling issue of EnKF is the problem of
long-range spurious correlations. These can be overcome
by the use of localisation. The ETKF configuration inHunt
et al.(2007) does not allow the use of localisation on a fore-
cast error covariance matrix as inHamill et al. (2001) or
Houtekamer and Mitchell(2001). However, localisation on
R is still possible. One way is to perform local analysis by
assimilating a subset of observations on a given location (Ott
et al., 2004). It has been implemented byHunt et al.(2007)
and is known as LETKF. This method can lead to disconti-
nuities in the analysis when an observation leaves the sub-
set of used observations for a given location. To solve this,
Hunt et al. (2007) select a subset of observations and in-
crease error variance for observations close to the boundary
of the subset. It is equivalent for a given location to replaceR
with ρ−1

l ◦R, with ρl some distance-based correlation matrix
(such as the one suggested byGaspari and Cohn, 1999), the
origin being the given location and◦ denoting the element-
wise (Hadamard or Schur) product. Note thatρ−1

l ◦ R must
be changed for each given location even if it uses the same
observations as for another location. We use this corrected
version of LETKF for our experiments.

Note that (L)ETKF can produce negative ice thicknesses.
In those (rare) cases, we set back ice thickness to zero.

3 Ice sheet model

3.1 Basis of ice sheet model

The goal of an ice sheet model is to simulate the evolution
of ice thicknessH(x, t) over a supposedly fixed bedrock to-
pographyBsoc(x) (Fig. 1). The total has a surface elevation
denotedS(x, t), according to

S(x, t) = H(x, t) + Bsoc(x), (13)

Table 1. List of parameter values involved in the parameterisation
of the surface mass balance. AsFclim is a time-evolving climatic pa-
rameter, its value will be specified for each experiment in Sect.4.1.

Parameter Value

Abl0 −5 m.a−1

Acc0 6 ma−1

c1 0.115
Tmelt −6◦C

λ 1
111000

◦Cm−1

γ −0.0063◦Cm−1

where t represents the time, and thex axis represents the
latitude.

Ice sheet thicknessH(x, t) is governed by the balance be-
tween surface mass budget, precipitation or surface melting,
and ice flow that drains ice accumulated in the central parts
toward the edges of the ice sheet. All these components can
evolve with time in response to climatic changes and inter-
nal feedbacks. In the context of model initialisation, we will
focus on ice flow, surface mass balance being assumed as
known.

In this study, we use a parameterisation of surface mass
balancebm as a function of atmospheric temperatureTs. The
values of the different parameters involved in this parame-
terisation are detailed in Table1. The surface mass balance
is the sum of accumulation Acc≥ 0 (snowfalls) and Abl≤ 0
(melting). These two terms are parameterised as follows:

Acc = Acc0e
−c1Ts (14)

Abl =

Abl0
(

Ts−Tmelt
Tmelt

)2
if Ts > Tmelt

0 else
(15)

Ablation occurs when the temperature exceeds the melting
point, represented byTmelt. The surface temperatureTs de-
pends on surface elevation of the ice sheetS, distance along
thex axis (representing latitude withx = 0 the pole) and cli-
mate temperatureFclim, according to the formula:

Ts(x, t) = Fclim + λx + γ S(x, t) (16)

Fclim evolves in time; its value will be specified for each ex-
periment in Sect.4.1.

This parameterisation (values are detailed in Table1) re-
produces qualitatively the typical surface mass balance over
an ice sheet and the feedbacks associated with its possible
changes in geometry.

Ice flow is gravity driven: it follows the quasi static equi-
librium equation, i.e. the momentum conservation equation
in which the only body force is due to gravity and accelera-
tion is negligible.

Incompressibility is assumed for the whole domain. This
is a classical approximation in ice sheet modelling. Although
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at the surface snow slowly densifies in firn and ice, this pro-
cess is restricted to the top 100 m of the ice sheet (over about
3000 m). Thus, for large-scale modelling, this layer is re-
placed by an ice equivalent one with density equal to ice den-
sity.

Ice behaves as a viscous fluid with a nonlinear viscosity.
It is usual among glaciologists to use the empirical “Glen”
flow law (Duval, 1979) with an exponent 3 (see below for
more details). In the following however we will use a poly-
nomial law associating the Glen flow law and a Newtonian
one. This law was suggested byLliboutry (1993) andCuffey
and Paterson(2010), and can better represent deformation at
very low stresses existing for instance in the upper part of the
ice sheet. Moreover, it prevents infinite viscosity in the case
of no deformation. It is written as:

ε̇ ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
=

(
Aτ2

+ φ
)
τ ′

ij , (17)

where ε̇ ij is the train rate tensor component,ui the veloc-
ity in the directioni, τ ′

ij is the deviatoric stress component,
A andφ are the coefficients of, respectively, the Glen flaw
law (n = 3) and the linear (Newtonian) flow law andτ is the
effective stress, or formally the second invariant of the devi-
atoric stress tensor.

Boundary conditions at the surface are atmospheric pres-
sure and no tangential stress. At the ice bed interface, a drag-
ging law (usually called sliding law by glaciologists) must be
prescribed to derive the tangential stressτb (also called basal
drag).

The dragging law depends on the substratum, and espe-
cially on whether it is hard-bed or soft-bed (sediment). How-
ever, many of the sliding/dragging laws proposed in glaciol-
ogy can be written as follows (seeCuffey and Paterson,
2010):

τb = KUa
slid, (18)

whereUslid is the basal tangential velocity,K anda are re-
spectively coefficient and exponent of the dragging law and
their value depends on the characteristics of the rock–ice in-
terface, basal temperature, sediment thickness, water pres-
sure, roughness, etc. In this article, we will restrict our work
to a linear law (a = 1).

Note that when the ice sheet reaches the ocean, ice be-
gins to float and forms structures called ice shelves (or float-
ing tongues if they are narrow). Basal drag there is zero and
Eq. (18) is not valid. In this work we will only consider an
ice sheet resting on the bedrock (grounded ice sheet).

Associating quasi static equilibrium and viscous behaviour
leads to the full Stokes equations. There is a whole hier-
archy of approaches to solve this problem (see for instance
the ISMIP inter-comparison project,Pattyn et al., 2008). Re-
cently, a few ice sheet models were designed to solving rig-
orously the full Stokes problem, but given the numerical cost
they are usually restricted to a regional scale or can only

afford a few century simulations; seeGillet-Chaulet et al.
(2012), Larour et al.(2012). All the other ice sheet models
use approximations based on the very small aspect ratio of
ice sheets. Ice sheets are indeed a few kilometres thick and
more than a thousand kilometres wide, so that asymptotic
developments are possible. In this work, we will use an ap-
proximation called shallow ice approximation that preserves
the main nonlinearity of the problem, linked to the deforma-
tion law, and the dependency on the dragging law coefficient
that is one of the characteristics we want to estimate.

3.2 Shallow ice approximation (SIA) for a flowline
model

This approximation (Hutter, 1983) describes ice deformation
in the vertical plane and allows us to calculate the vertical
profile of horizontal velocity. It is based on an asymptotic
approach and is vertically integrated. We use here a model,
Winnie, which is a flowline and isothermal version of a 3-D
ice sheet model, GRISLI (seeRitz et al., 2001; Peyaud et al.,
2007; Quiquet et al., 2012). According to the SIA, ice flow
is in the direction of the steepest slope of the surface and
can be thus relatively well represented by a flow line follow-
ing that direction. The isothermal assumption allows uniform
deformation coefficients,A andφ (their values are given in
Table2). It is taken as a first step in this study because taking
thermal processes into account would require us to estimate
a third poorly known parameter that is the geothermal heat
flow. Such a topic is beyond the scope of this study.

The vertically averaged horizontal velocity,U , is given by

U = Udef+ Uslid. (19)

Udef comes from ice deformation in the vertical plane, and
according to the SIA equations and our constitutive equation
(polynomial) reads as

Udef =

[
−

A

5
(ρg)3H 4∂S

∂x

2

−
φ

3
ρgH 2

]
∂S

∂x
, (20)

wherex is the horizontal coordinate,ρ is ice density,g grav-
ity, H andS are ice thickness and ice sheet surface elevation.

Note that the nonlinearity of the constitutive equation is
implicitly taken into account by the exponents for surface
slope and ice thickness.

The horizontal velocity at the surfaceUs is one of the ob-
served characteristics and is given by

Us =

[
−

A

4
(ρg)3H 4∂S

∂x

2

−
φ

2
ρgH 2

]
∂S

∂x
+ Uslid. (21)

To derive the basal velocityUslid, we assume that basal drag
and basal velocity are linked through a linear dragging law
and that the basal shear stressτb is given by the SIA:

τb = ρgH
∂S

∂x
= −β Uslid, (22)
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Table 2.List of parameter values involved in the computation of ice
velocities.

Parameter Value

ρi 910 kgm−3

g 9.81 ms−2

A 2× 10−16Pa−3a−1

φ 8.313 Pa−1a−1

whereβ is positive and is one of the characteristics we want
to determine. Because this parameter covers several orders of
magnitude, we often useα = log10(β).

The previous equation is one example of the sliding laws
described in Eq. (18). Although simple, this method repro-
duces the various types of ice flow found in ice sheets: slow
flow in the central parts where ice deformation is dominant,
and fast flow in ice streams for low values ofβ. Such a sim-
ple sliding relation cannot reflect the large variety of slid-
ing processes and their nonlinearities, but is sufficient for our
purpose, especially with the isothermal assumption (Bueler
and Brown, 2009). Moreover, due to the thin layer approxi-
mations, one should be careful in the interpretation of sharp
horizontal changes in the bedrock topography or basal drag
coefficient.

Finally, the evolution of ice sheet geometry is derived from
the mass conservation equation:

∂H

∂t
= bm −

∂UH

∂x
(23)

In our model, mass conservation is the only time-dependent
equation andH is the only prognostic variable. Ice veloci-
ties are diagnostic (completely determined by the ice sheet
geometry) because acceleration terms are neglected.

3.3 Numerics

The velocity field is obtained analytically from Eqs. (19),
(20), and (22) as a function of ice thickness and surface slope.
The mass conservation equation (23) is solved by a finite dif-
ference method with a staggered regular grid, velocities and
slopes grid points are taken at the midpoint between thick-
ness grid points. Because velocity is strongly dependent on
the ice sheet geometry, the time scheme is semi-implicit; see
Hindmarsh(2001). We use for every experiment a fixed time
step of 0.01 year.

4 Numerical results

We now present our numerical results. This section is divided
into four paragraphs: firstly we present the numerical setup
of the various experiments. Secondly we explain how to build
the initial ensemble members. Thirdly we present the prelim-
inary results obtained with the ETKF and a large ensemble.

Finally, we study the impact of smaller ensemble sizes, for
ETKF with inflation and localisation.

We recall here that our problem is to estimate jointly the
ice thicknessH , the bedrock topographyBsoc, and the basal
sliding coefficientβ = 10α. As this particular problem has
never been studied before with ensemble filtering, this work
is focused on twin experiments, because it will allow quanti-
tative assessment of the method performance.

4.1 Numerical setup

Twin experiments consist in comparing three model states:
the reference (or true) state, which is used to generate obser-
vations; the background state, which is another model state,
different from the reference; the assimilated state, also called
analysis, resulting from the DA procedure. We can then com-
pare the misfit between the assimilation and the reference,
and the misfit between the reference and the background (no
assimilation).

We performed the twin experiments over a 20-year time
window. This is realistic for this problem, as the available
observation records roughly span 20 years. Note that this
small window size makes our proposed DA experimental
setup quite challenging.

We first explain how to choose the reference state. We set
up the Winnie model with 241 grid points and a space step
1x = 5 km, so that the state vector(H(x),Bsoc(x),α(x))

length is 743. The reference run is initialised att = 0, with
the ice thicknessH and bedrock topographyBsoc presented
in Fig. 2. This ice thickness is chosen as the stable state for
a constant climate forcing (Fclim = 8◦C in Eq.15). In prac-
tice, it is produced from a very long (50 000 years) model
run, starting fromH = 0. Also att = 0, the sliding parame-
ter coefficientsβ(x) = 10α(x) are defined as in Fig.3.

With this reference initial state, we now impose a linear
climate change (+0.2◦C for 20 years, soFclim(t) = 8+0.01t
with t in years) and we perform a 20-year model run in or-
der to get the reference state over the assimilation window.
Note that after 20 years the ice thickness is very similar to
the initial one: the dynamics, highly nonlinear, are also very
slow.

We then use the reference state to generate synthetic ob-
servations. We choose1t = 1 year as a realistic observation
interval, therefore our assimilation experiments will have
20 observation times, and thus 20 analysis steps. Every year,
we observe the surface elevationS and the surface velocity
Us at each grid point (we detailed the reference surface ve-
locity profile with its sliding and deformation components
in Fig. 4). We also observe the bedrock topography every
year and every 30 grid points. To simulate observation errors,
we add noise to these (perfect) observations. More precisely,
we add a Gaussian white noise to each observation indepen-
dently, with realistic standard deviations: 2 m for surface ele-
vation, 3 myear−1 for surface velocity and 20 m for bedrock
topography.
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Fig. 2. Ice sheet geometry for the reference and background states.
Thex axis represents the horizontal extent of the ice sheet (in km).
They axis is the elevation in metres from the sea level. The refer-
ence bedrock topography is in blue, the background bedrock is in
green crosses. Reference and background surface altitude are iden-
tical, in red.
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Fig. 3. Basal sliding parameterβ(x) as a function of the ice sheet
extentx, for the reference state (solid blue) and the background
(green crosses), in log scale.

Every DA experiment presented in this section uses the
same background state (see Figs.2 and3) as an initial en-
semble mean. The next section describes how to build the
ensemble from the background state. The same process has
been used to produce the background state and parameters
from the reference.

4.2 Initial ensembles

As we said before, the initial ensemble mean is set to the
background state. Before we describe the procedure, we have
to acknowledge that some observations were used twice:
once to build initial ensembles (i.e. as a priori information),
and another time in the DA system (i.e. as observations). This
violates a crucial hypothesis required by Kalman-based fil-
ters: the independence between the a priori estimation and
the observations. However, this is a characteristic of realistic
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Fig. 4. Ice velocity at the surface of the ice sheet for the reference
state, in metres per year, as a function of the ice sheet extentx. The
total surface velocityUs is represented in red, its sliding component
Uslid is in orange crosses, its deformation componentUs,def with
cyan x (we recall thatUs = Uslid + Us,def).

frameworks: indeed, the state-of-the-art a priori bedrock to-
pography Bedmap2 (Fretwell et al., 2013) is produced using
surface altitude observations (as well as all available bedrock
measurements).

Now let us describe how to build initial ensemble mem-
bers. Forβ = 10α, we first generate an ensemble ofα(x) pa-
rameters drawn from a Gaussian distribution with a given co-
variance matrix (a squared exponential covariance function).
Then we transform this ensemble ofα into an ensemble ofβ.

Then we generate an ensemble of bedrock topographies
according to a Gaussian distribution, whose mean is the
background and whose covariance matrix is consistent with
observation statistics. The covariance matrix requires two
ingredients: the variances and a correlation matrix, accord-
ing to the formulaB = 6C6, where6 is the square root
of the diagonal matrix of variances, andC is a correlation
matrix. Where bedrock topography observations are avail-
able, the variance is set to the observation variance (20 m in
standard deviation). Where there is no ice, the variance is
set to the surface altitude observation variance (2 m in stan-
dard deviation). Elsewhere the variance increases with the
distance to the closest observation (bedrock or surface) avail-
able. Figure5 presents the standard deviations that form the
diagonal of6. At worst the standard deviation is equal to
320 m, which is accurate compared to available real uncer-
tainty estimation onBsoc.

For the correlation matrix, we assume that the correla-
tion of bedrock topography between two grid points only de-
pends on distance (isotropy). Classically a Gaussian function
is taken for the correlation function. However, we choose a
sum of two Gaussian functions (see Fig.6), as using only one
Gaussian function produced too smooth or too rough bedrock
topographies. Indeed, this combination allows us to ensure
the smoothness of simulated bedrock topographies at a large
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Fig. 5. Standard deviations (in metres) for the matrix6 used to
generate the initial bedrock topography ensembles, as a function of
the extentx. Local minimums correspond to either “no ice” points
(close to the boundaries of the domain) or observation points.
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Fig. 6. Correlation function (in red crosses) used for the generation
of initial bedrock topography ensembles. This is a combination of
two Gaussian functions: one to capture large-scale behaviour (or-
ange x) and one for short-scale behaviour (cyan circles).

scale and their slight roughness at shorter scales. This be-
haviour seems to produce realistic bedrock topographies.

We now have an ensemble of bedrock topographies. We
then generate an ensemble of surface elevations according to
a Gaussian distribution. As before, its mean is the true sur-
face elevation (from the reference run) and its covariance ma-
trix is consistent with surface elevation observation statistics
(white noise with a standard deviation of 2 m). To obtain the
initial ensemble for ice thickness, we subtract the ensemble
of bedrock topography from the ensemble of surface eleva-
tion: H = S − Bsoc. Then we correct this new ensemble to
avoid negative ice thicknesses (we just set them back to zero).
Finally we run the model for each ensemble member during
1 year in order to obtain more physically balanced ice sheets
and we perform a multiplicative rescaling on the produced
ensemble so that its mean remains equal to the background.
An example of 50 ensemble members is presented in Fig.7.
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Fig. 7. Example of an initial ice sheet ensemble (50 members):
bedrock topographiesBsoc(x) and surface elevationS(x) as func-
tions of the horizontal distancex.

4.3 First results with a large size of ensemble

We first perform twin experiments with a large ensemble
(size Ne = 1000) compared to the state vector dimension,
in order to validate our ETKF approach, without having to
deal immediately with under-sampling issues. We therefore
run the ETKF without inflation or localisation. The bedrock
topography obtained after 20 years is presented in Figs.8
(mean topography with or without assimilation) and9 (ab-
solute difference from the reference with or without assimi-
lation). This clearly shows that the final results on ice thick-
ness and bedrock topography are very accurate, as the aver-
age RMS error for bedrock topography has decreased from
207.5 to 45.9 m and the maximum standard deviation from
671.6 to 150.5 m. The average RMS error for ice thickness
has also decreased from 207.5 to 45.5 m and the maximum
absolute difference from 671.6 to 150.5 m.

Figure10 presents the results for theβ parameter. We can
see that the accuracy after assimilation is quite good at the
edges of the ice sheet and worse in the centre, whereβ is
large, and also where there is no ice. However, poor results
on largeβ are not meaningful. Indeed, we are mostly inter-
ested in recovering the sliding component of the velocity, and
it is well known among glaciologists that its sensitivity to
variations ofβ for largeβ is very low:β ≥ 105 leads to zero
sliding velocity in any cases, so thatβ = 106 or 107 does
not make any difference. Similarly,β in areas where there
is no ice is meaningless. This is confirmed in Fig.11, which
shows the sliding counterpart of the surface velocity: we can
see that the analysis is much closer to the reference than the
background. Precisely, Fig.12shows the absolute difference
from the reference on surface sliding velocity with or without
assimilation, and we can see that it is much reduced with as-
similation. However,Uslid is poorly retrieved at some points
aroundx = 1000 km. This corresponds to a zone where∂S

∂x
is

much smaller, which is the onset of the sliding. At this point
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Fig. 8. Ice sheet geometries after 20 years, with the 1000-member
ETKF. The analysis bedrock topography (final mean ensemble in
purple x) is compared to the background (green crosses) and the ref-
erence (blue). The analysis result and the reference are really close
except for around 150 km from the origin (see also Fig.9 for de-
tailed results). The surface elevation is accurately observed (in red),
so that background, reference and analysis are similar.
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Fig. 9. Absolute difference between analysis and reference (in pur-
ple x) after 20 years of the 1000-member ETKF is compared to
the absolute difference between background and reference (in green
crosses) for bedrock topography. The average RMS error is de-
creased from 207.5 m for the background to 45.9 m for the analysis
and the maximum absolute difference from 671.6 to 150.5 m.

the dynamics are close to being discontinuous, and therefore
highly nonlinear.

We then apply a slight inflation of 1.01 to the 1000-
member ETKF. Figure13 (to be compared to Fig.9) shows
the improved results for the ice sheet geometry and Fig.14
(to be compared to Fig.12) for the sliding velocity. The im-
provements due to inflation are particularly pronounced in
areas where sliding and deformation are both predominant
and the dynamics highly nonlinear.
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Fig. 10.β parameter after 20 years of the 1000-member ETKF. The
analysis (purple x) is compared to the background (green crosses)
and the reference (blue). Values ofβ above 105 are all equivalent in
terms of sliding velocity. Similarly,β is meaningless where there is
no ice (close to boundaries).

0 200 400 600 800 1000 1200
−1500

−1000

−500

0

500

1000

1500

2000

2500

3000

x axis (in km)

ve
lo

ci
ty

 (i
n 

m
/y

r)
ETKF result for sliding velocities (ensemble size = 1000)

 

 

background final analysis  reference 

Fig. 11. Sliding componentUslid of the surface velocity after 20
years of the 1000-member ETKF. The analysis mean (purple x)
is compared to the background (green crosses) and the reference
(blue).
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Fig. 12.Absolute difference between final analysis mean (purple x)
or background (green crosses) and reference sliding component of
surface velocity after 20 years of the 1000-member ETKF.
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Fig. 13.Absolute difference between analysis and reference (in pur-
ple x) after 20 years of the 1000-member ETKF with a slight infla-
tion of 1.01 is compared to the absolute difference between back-
ground and reference (in green crosses) for bedrock topography.
The average RMS error (14.0 m) and the maximum absolute differ-
ence (47.8 m) are improved compared to the result obtained without
inflation.

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800
Absolute difference from reference for sliding velocity (size = 1000, infla 1.01)

x axis (in km)

ab
so

lu
te

 d
iff

er
en

ce
 (i

n 
m

/y
r)

 

 

background final analysis  

Fig. 14.Absolute difference between final analysis mean (purple x)
or background (green crosses) and reference sliding component of
surface velocity after 20 years of the 1000-member ETKF with a
slight inflation of 1.01.

4.4 Dealing with small sizes of ensemble

The results obtained with a large ensemble are satisfying.
Nevertheless we will not be able to perform such experiments
with a full 3-D large-scale ice sheet model. Indeed, in that
case the state vector dimension is larger than 100 000, and
it would be impossible to use an ensemble that large. With
this remark in mind we now perform ETKF experiments
with smaller ensembles: 100, 50, and 30. Without localisa-
tion and/or inflation the ETKF is known for its divergence for
small ensembles. To check this fact, we perform one exper-
iment with 100 members, without localisation or inflation.
Figure 15 presents the final analysed bedrock topography,
which is clearly degraded with respect to the background.
Actually, RMS error on bedrock topography increases from
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Fig. 15.Bedrock topography after 20 years, with the 100-member
ETKF (no inflation, no localisation). The analysis (final mean en-
semble in purple x) is compared to the background (green crosses)
and the reference (blue). RMS error increases from 207.5 m for the
background state to 302.4 m for the final analysis step and the max-
imal absolute difference from 671.6 to 1093.7 m.
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Fig. 16.Bedrock topography after 20 years of the LETKF with in-
flation. The background (green) is compared to the reference (blue)
and the analyses for various ensemble sizes: 100 members (purple),
50 members (cyan) and 30 members (orange). RMS error evolution
is synthesised in Table3. See also Fig.17 for detailed results.

207.5 m for the background state to 302.4 m for the final anal-
ysis step, which is a 50 % increase.

We then use inflation, as we did with 1000 members.
Best results are obtained in that case with an inflation of
1.10. Compared to the results without inflation, RMS er-
rors are improved to 121.2 m for the bedrock topography and
to 235.4 myear−1 for the sliding velocity; maximum abso-
lute differences from the reference are also improved (see
Table3). However, those results are still quite poor. In such
a context localisation is mandatory. Consequently, for the re-
maining part of this section, we use LETKF with manually
tuned inflation and localisation.
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Fig. 17. Absolute difference between results and reference for the
bedrock topography after 20 years of the LETKF with inflation. The
background (green) is compared to the analyses for various ensem-
ble sizes: 100 members (purple), 50 members (cyan), and 30 mem-
bers (orange). RMS error evolution is synthesised in Table3.

Let us recall briefly how localisation is performed. The
observation error covariance matrixR is modified intoρ−1

l ◦

R, with ρl some distance-based correlation matrix (Gaspari
and Cohn, 1999). The distancel must be tuned manually in
order to achieve good results. It corresponds to the maximal
distance between a given grid point and the observations used
in analysis at this point.

We performed numerous experiments in order to deter-
mine by hand the bestl and the best inflation parameter for
each ensemble. We chose the bedrock topography RMS er-
ror as a score to measure the performance of inflation and
localisation. Regarding localisation, the best results were ob-
tained withl between 161x (ensemble size 30) and 241x

(ensembles size 50 and 100), so that this distancel is quite
insensitive to ensemble sizes. In contrast, the optimal value
for the inflation parameter proved to be much more sensitive
to ensemble sizes (ranging from 0.98 to 1.14).

Table3 presents the RMS error and maximal absolute dif-
ference from the reference forBsocandUslid for the optimally
tuned LETFK with 30, 50, and 100 members, as well as the
ETKF for 100 and 1000 members. We can see that despite the
small ensemble sizes the results are pretty good. Figures16
and17 present the bedrock topography and its absolute dif-
ference from the reference with 30-, 50-, and 100-member
ensembles and confirm the good performance of the filters.
As before, the performance onβ itself is not significant, so
we show only results on the sliding velocity. Figure18shows
the sliding velocity, and Fig.19 presents the absolute differ-
ence from the reference for the sliding velocities. As pre-
viously, these figures enlighten two different regimes. First,
where the ice is either grounded or in full sliding the filters
perform quite well. Second, where the ice just starts to slide
(where the proportion between the sliding and deformation
counterparts of the velocity changes) the filters fail and the
RMS is larger, as already noticed in the case of the 1000-
member ETKF without inflation.
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Fig. 18. Sliding componentUslid of the surface velocity after 20
years of the LETKF with inflation. The mean of the final analysis
ensemble is compared to the background (green) and the reference
(blue), for various ensemble sizes: 100 members (purple), 50 mem-
bers (cyan), and 30 members (orange). Localisation and inflation
parameters are described in Table3. See also Fig.19 for detailed
results.
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Fig. 19. Absolute difference between results and reference for the
sliding componentUslid of the surface velocity after 20 years of
the LETKF with inflation. The background (green) is compared
to the analyses for various ensemble sizes: 100 members (purple),
50 members (cyan), and 30 members (orange). RMS error evolution
is synthesised in Table3.

We also performed LETFK (with inflation) experiments
with smaller ensembles (sizes 10 and 20), but the results were
very dissatisfying because of filter divergence (not shown
here).

5 Conclusions and further directions

In this article, we developed an ensemble transform Kalman
filter (Hunt et al., 2007) in order to estimate jointly the
bedrock topography, the ice thickness and the basal sliding
parameter of an ice sheet. The originality of this work is
the application of an EnKF approach in ice sheet modelling.
We performed twin experiments with a flowline simplified
ice sheet model using the shallow ice approximation and a
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Table 3.Summary of best LETKF + inflation results in term of RMS and maximal absolute difference and comparison with standard ETKF
results.

Experiment Size of ensemble Loc.l Inflation RMSEBsoc Max. errorBsoc RMSEUb Max. errorUb
(m) (m) (myear−1) (myear−1)

Background – – – 207.5 671.6 238.1 737.1
ETKF 1000 – – 45.9 150.5 237.9 2130.0
ETKF + inflation 1000 – 1.01 14.0 47.8 62.2 383.3
ETKF 100 – – 302.4 1093.7 347.5 1895.6
ETKF + inflation 100 – 1.10 121.2 362.7 235.4 1556.1
LETKF + inflation 100 241x 1.02 29.9 111.2 158.1 1453.9
LETKF + inflation 50 231x 1.14 48.8 151.1 188.0 1691.2
LETKF + inflation 30 161x 0.98 59.7 205.5 214.5 2120.6

sliding law for basal velocities. Every experiment used sur-
face elevation and surface velocity observations all over the
ice sheet and a couple of observations of bedrock topography.
First we successfully tested our DA approach with a large
ensemble to validate the use of ETKF. Then we tried with
smaller ensembles. In those cases, localisation and inflation
are mandatory. Obtained performances were good even for
ensembles with a size as small as 30.

However, localisation and inflation were manually tuned.
Localisation distance was not very sensitive to ensemble size
but inflation was. In order to avoid the manual tuning of op-
timal inflation parameters, we could use online estimation.
This is a growing interest in the DA community. Some works
such asBocquet(2011) or Bocquet and Sakov(2012) pro-
vided convincing theoretical arguments for the use of infla-
tion and its automatic computation.

Finally, results shown here are preliminary, as we used
a flowline model. The logical choice to improve the model
complexity would be to use a hybrid shallow ice–shallow
shelf model as in GRISLI (Ritz et al., 2001).
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