A SEIR model for control of infectious diseases with constraints

Abstract : Optimal control can be of help to test and compare different vaccination strategies of a certain disease. In this paper we propose the introduction of constraints involving state variables on an optimal control problem applied to a compartmental SEIR (Susceptible. Exposed, Infectious and Recovered) model. We study the solution of such problems when mixed state control constraints are used to impose upper bounds on the available vaccines at each instant of time. We also explore the possibility of imposing upper bounds on the number of susceptible individuals with and without limitations on the number of vaccines available. In the case of mere mixed constraints a numerical and analytical study is conducted while in the other two situations only numerical results are presented.
Type de document :
Article dans une revue
Mathematical Biosciences and Engineering, AIMS, 2014, 11 (4), pp.761 - 784. 〈10.3934/mbe.2014.11.761〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01067316
Contributeur : Estelle Bouzat <>
Soumis le : mardi 23 septembre 2014 - 13:26:49
Dernière modification le : lundi 21 mars 2016 - 17:35:17

Lien texte intégral

Identifiants

Collections

Citation

Md. Haider Ali Biswas, Luis Tiago Paiva, Maria Do Rosário De Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences and Engineering, AIMS, 2014, 11 (4), pp.761 - 784. 〈10.3934/mbe.2014.11.761〉. 〈hal-01067316〉

Partager

Métriques

Consultations de la notice

181