Mixed semi-Lagrangian/finite difference methods for plasma simulations

Francis Filbet 1, 2 Chang Yang 3
2 KALiFFE - Kinetic models AppLIed for Future of Fusion Energy
Inria Grenoble - Rhône-Alpes, ICJ - Institut Camille Jordan [Villeurbanne], INSMI (CNRS)
Abstract : In this paper, we present an efficient algorithm for the long time behavior of plasma simulations. We will focus on 4D drift-kinetic model, where the plasma's motion occurs in the plane perpendicular to the magnetic field and can be governed by the 2D guiding-center model. Hermite WENO reconstructions, already proposed in [25], are applied for solving the Vlasov equation. Here we consider an arbitrary computational domain with an appropriate numerical method for the treatment of boundary conditions. Then we apply this algorithm for plasma turbulence simulations. We first solve the 2D guiding-center model in a D-shape domain and investigate the numerical stability of the steady state. Then, the 4D drift-kinetic model is studied with a mixed method, i.e. the semi-Lagrangian method in linear phase and finite difference method during the nonlinear phase. Numerical results show that the mixed method is efficient and accurate in linear phase and it is much stable during the nonlinear phase. Moreover, in practice it has better conservation properties.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01068223
Contributeur : Francis Filbet <>
Soumis le : jeudi 25 septembre 2014 - 11:15:58
Dernière modification le : mercredi 11 avril 2018 - 01:53:49
Document(s) archivé(s) le : vendredi 14 avril 2017 - 16:04:40

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01068223, version 1

Citation

Francis Filbet, Chang Yang. Mixed semi-Lagrangian/finite difference methods for plasma simulations. 2014. 〈hal-01068223〉

Partager

Métriques

Consultations de la notice

515

Téléchargements de fichiers

197