Smoothing parameter estimation for Markov random field classification of non-Gaussian distribution image

Abstract : In the context of remote sensing image classification, Markov random fields (MRFs) have been used to combine both spectral and contextual information. The MRFs use a smoothing parameter to balance the contribution of the spectral versus spatial energies, which is often defined empirically. This paper proposes a framework to estimate the smoothing parameter using the probability estimates from support vector machines and the spatial class co-occurrence distribution. Furthermore, we construct a spatially weighted parameter to preserve the edges by using seven different edge detectors. The performance of the proposed methods is evaluated on two hyperspectral datasets recorded by the AVIRIS and ROSIS and a simulated ALOS PALSAR image. The experimental results demonstrated that the estimated smoothing parameter is optimal and produces a classified map with high accuracy. Moreover, we found that the Canny-based edge probability map preserved the contours better than others.
Type de document :
Communication dans un congrès
ISPRS TC VII Symposium, Sep 2014, Istanbul, Turkey. 2014
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01068242
Contributeur : Yuliya Tarabalka <>
Soumis le : jeudi 25 septembre 2014 - 11:39:46
Dernière modification le : samedi 27 janvier 2018 - 01:31:40
Document(s) archivé(s) le : vendredi 26 décembre 2014 - 10:31:50

Fichier

Aghighi_isprsannalsII.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01068242, version 1

Collections

Citation

Hossein Aghighi, John Trinder, Ke Wang, Yuliya Tarabalka, Samsung Lim. Smoothing parameter estimation for Markov random field classification of non-Gaussian distribution image. ISPRS TC VII Symposium, Sep 2014, Istanbul, Turkey. 2014. 〈hal-01068242〉

Partager

Métriques

Consultations de la notice

395

Téléchargements de fichiers

204