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ABSTRACT:

In the context of remote sensing image classification, Markov random fields (MRFs) have been used to combine both spectral and

contextual information. The MRFs use a smoothing parameter to balance the contribution of the spectral versus spatial energies, which

is often defined empirically. This paper proposes a framework to estimate the smoothing parameter using the probability estimates from

support vector machines and the spatial class co-occurrence distribution. Furthermore, we construct a spatially weighted parameter to

preserve the edges by using seven different edge detectors. The performance of the proposed methods is evaluated on two hyperspectral

datasets recorded by the AVIRIS and ROSIS and a simulated ALOS PALSAR image. The experimental results demonstrated that the

estimated smoothing parameter is optimal and produces a classified map with high accuracy. Moreover, we found that the Canny-based

edge probability map preserved the contours better than others.

1. INTRODUCTION

Hyperspectral imaging sensors provide a huge amount of data

with rich spatial, spectral and temporal resolution information.

These images have attracted much attention in the remote sens-

ing community and have opened the doors to variety of new ap-

plications and challenges, which need to employ both spectral

and spatial information for accurate data analysis and classifica-

tion (Camps-Valls et al., 2014). Markov random fields (MRFs)

as undirected graphical models are common methods for incor-

porating both spectral and contextual information (Chen et al.,

2010a). They are formulated as the minimization of an energy

function which consists of spectral and spatial energy terms and

an important term which plays a key controlling role known as

smoothing parameter (Aghighi et al., 2014). Larger values of the

smoothing parameter result in over-smoothed classified maps and

too small values do not fully utilize the available spatial informa-

tion (Tolpekin and Stein, 2009). Several attempts have been made

to estimate the smoothing parameter, which would maximize the

image classification accuracy. Derin and Elliott (1987) employed

the least squares method, but the performance of their method

was limited by the choice of suitable data samples (Derin and El-

liott, 1987, Tso and Mather, 1999). A number of studies have ex-

amined heuristic optimization algorithms to estimate the smooth-

ing parameters, such as iterative conditional estimation (Salzen-

stein and Pieczynski, 1997), genetic algorithms (Tso and Mather,

1999), simulated annealing (Li et al., 2012), and Ho-Kashyap

optimization method which was used for automatic weight pa-

rameters determination in the context of supervised classification

by using training data (Serpico and Moser, 2006). In the recent

years, Tolpekin and Stein (2009) demonstrated a new smooth-

ing parameter estimation technique for super-resolution mapping

based on class separability, the neighbourhood system size and

the configuration of class labels. Then, Li et al. (2012) added lo-

cal properties in estimating the optimal smoothing parameter and

developed their spatial adaptive method. However, both meth-

⇤Corresponding author.

ods introduced another parameter, which was set as a constant

empirical value. Moreover, both methods suffered from simi-

lar covariance assumptions for the classes. Thus, we proposed

a robust smoothing parameter estimation framework to overcome

their limitations (Aghighi et al., 2014). One of the limitations of

the described methods is that they were developed based on the

assumption of the Gaussian class conditional distribution (Aghighi

et al., 2014), (Tolpekin and Stein, 2009) and (Li et al., 2012). Al-

though the Gaussian distribution is widely applied in many of

image labelling applications, this assumption may not be tenable

for remotely sensed mixed pixels (Xu et al., 2005). Moreover,

some practical data such as polarimetric synthetic aperture radar

(PolSAR) data are non-Gaussian (Doulgeris et al., 2008).

Another common drawback of contextual based classification ap-

proaches is that they generate unreliable classification results near

edges between the land covers (Moser et al., 2013), or remove

the edges of small features. Therefore, several attempts have

been made to develop the edge-preserving methods, which have

been used during the MRF optimization process. For instance,

line processes (Moser et al., 2013) and (Solberg et al., 1996) and

adaptive neighborhood systems (Hegarat-Mascle et al., 2007), are

both based on the assumption of using an ideal edge map. How-

ever, each image band may provide different or even conflict-

ing information based on its wavelength. Therefore, some other

methods such as fuzzy no-edge/edge function using Sobel mask

(Tarabalka et al., 2010), edge probability map using Canny oper-

ator (Aghighi et al., 2014) and graduated increase edge penalty

(Yu and Clausi, 2008) were introduced in previous studies.

This article presents a novel robust framework for the smooth-

ing parameter estimation which is not dependent on assumptions

of a specific statistical distribution of the image data (Section

2.1). This contextually adaptive smoothing parameter estima-

tion method is proposed on the basis of the balance of spatial

and spectral energies and the global spatial frequency distribution

of a co-occurrence class label. For this purpose, we have intro-

duced a new spectral energy change function and two new con-

cepts called the class label co-occurrence matrix of the categories
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(CLCMC) and global class label co-occurrence matrix of the cat-

egories (GCLCMC), which can all be computed using pairwise

coupling of probability estimates from support vector machines

(SVM) one-versus-one classification outputs. Furthermore, we

compared seven different edge filters to incorporate the edge in-

formation into the MRF framework: Canny, Sobel, Roberts, Pre-

witt, Laplacian of Gaussian, curvature edge indicator, graduated

edge penalty. The performance of the proposed method is eval-

uated using two hyperspectral images collected by the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) and the Reflec-

tive Optics System Imaging Spectrometer (ROSIS) (Section 3).

Finally, conclusions are drawn in Section 4.

2. PROPOSED METHOD

In the development of our new smoothing parameter estimation

framework, we denote an image by Y =
{

Yi 2 R
B, i = 1,2, · · · ,m

 

,

where B is a number of spectral channels, and m is a number

of pixels. Let Ω = {ω1,ω2, . . . ,ωM} be a set of M thematic

classes of interest. The classification task consists in assigning

for each pixel Yi a class label l j, yielding the classification map

L = {` j, j = 1,2, · · · ,m}.

2.1 The Potts MRF model

The optimal classification map L⇤ given the image Y can be gen-

erated by solving the maximization problem for the a posteriori

probability (MAP) decision rule (1).

L⇤ = argmax
L

{p(L|Y )} = argmax
L

{p(Y |L) p(L)} (1)

where, p(Y | L) is the class-conditional distribution and p(L) is

the prior probability distribution. Based on the complexity of (1)

which involves the optimization of a global distribution model

of the image and due to the equivalence of MRF and Gibbs ran-

dom field (Duggin and Robinove, 1990), (Geman and Geman,

1984), this optimization problem can be simplified and resolved

by minimizing the sum of local posterior energies (2) (Geman

and Geman, 1984):

U (L|Y ) = U (Y |L)+U (L) . (2)

In this research, we applied expectation-maximization (EM) al-

gorithm (Levitan and Herman, 1987) to compute the MAP. In

Equation (2), U(Y | L) and U(L) denote spectral and spatial en-

ergy terms, respectively. The spatial term U(L) is defined by

using the Potts model, which penalizes different class labels for

neighboring pixels (3):

U (L) = ∑
Y j2Ni

W
(

` j

)(

1−δ
(

`i, ` j

))

(3)

where, ` j is the class label of a pixel Y j which is a member of

the symmetric neighborhood for pixel Yi denoted by Ni. In this

equation, δ
(

`i, ` j

)

is the Kronecker delta function (δ
(

`i, ` j

)

=

1 i f `i = ` j and δ
(

`i, ` j

)

= 0 i f `i 6= ` j . In Equation (3),

W (` j) denotes the weight of contribution from pixel ` j 2 Ni to

the spatial energy term and can be modeled as:

W
(

` j

)

= q⇥φ
(

` j

)

(4)

where, 0  q < ∞ and ∑
` j2Ni

φ
(

` j

)

= 1. In these equations, q con-

trols the overall magnitude of weights and consequently the spa-

tial energies; thus, larger values of q leads to smoother solutions

(Tolpekin and Stein, 2009). Here, φ
(

` j

)

inversely depends to

d
(

`i, ` j

)

which is a geometric distance between the pixel `i and

its spatial neighbors ` j ( 5) (Li et al., 2012).

φ
(

` j

)

=
1

η

 

d
(

`i, ` j

)

r

!−g

(5)

where, r is the spatial resolution, η is a normalization constant to

∑
` j2Ni

φ
(

` j

)

= 1 and g is a power-law index which is assumed to

be one. By substitution (3- 5) in (2) we can write (2) as (6).

U (L|Y ) = U (Y |L)+q ∑
Y j2Ni

φ
(

` j

)(

1−δ
(

`i, ` j

))

(6)

In order to normalize U(L | Y ), we multiply (6) by 1/(1+q):

(L|Y ) ∝
1

1+q
U (Y |L)+

q

1+q
∑

Y j2Ni

φ
(

` j

)(

1−δ
(

`i, ` j

))

(7)

We call q/(1+q) smoothing parameter and denote it by λ ; there-

fore, 1/(1+q) can be written as 1−λ . As mentioned, the opti-

mal classified map L⇤ depends on the maximization of the poste-

rior probability (1) or the minimization of local posterior energies

(2 or 7), thus the absolute value of U(L | Y ) in (7) is not impor-

tant. From Equation (8) and on, U(L | Y ) is referred to as the

normalised energy.

U (L|Y ) = (1−λ )U (Y |L)+λ ∑
Y j2Ni

φ
(

` j

)(

1−δ
(

`i, ` j

))

(8)

The spectral energy U(Y | L) can be computed as (9) (Tarabalka

et al., 2010):

U (Y |L) = −ln{P(Yi|`i)} (9)

In order to estimate the smoothing parameter, consider that a

given pixel i with the true label `i = α is assigned to an incor-

rect class label `i = β . Therefore, based on (1) we can infer that:

p(`i = β |Yi)  p(`i = α|Yi) (10)

Which is same as (11)

U (`i = α|Yi) ≥U (`i = β |Yi) (11)

By substituting the corresponding terms in (11) and solving this

inequality equation, we will have the local likelihood energy change

∆U ι
αβ

and the change of a local prior energy which is simplified

as ∆UP
αβ = qψαβ . Furthermore, λ for each pair of classes (α and

β ) can be estimated by (12) (Aghighi et al., 2014):

λαβ =
1

1+
ψαβ

∆U l
αβ

(12)

Due to the assumption of Gaussian class conditional densities,

the value of ∆U ι
αβ

was defined as a Mahalanobis distance us-

ing the equal covariance matrix for all the classes in the case of

(Tolpekin and Stein, 2009, Li et al., 2012); or using the mean

of the covariance of each pair of classes in the case of (Aghighi

et al., 2014). However, this assumption may not be tenable for

remotely sensed mixed pixels (Xu et al., 2005). Thus, in order

to avoid the Gaussian distribution assumption we propose a new

equation to compute the change in the likelihood energy as:

∆U ι
αβ = −ln |{P(Yi|`i = β )}−{P(Yi|`i = α)}| (13)

where, P(Yi | `i) can be estimated by pairwise coupling of prob-

ability estimates from one-versus-one SVM outputs (Wu et al.,

2004). In order to compute ∆U ι
αβ

, the image pixels are catego-
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Table 1: Global matrix of ∆U ι
αβ

for the image’s selected pixels

∆U ι
1,1 = 0 ∆U ι

1,2 . . . ∆U ι
1,M

∆U ι
2,1 ∆U ι

2,2 = 0 . . . ∆U ι
2,M

. . . . . . 0 . . .

∆U ι
M,1 ∆U ι

M,2 . . . ∆U ι
M,M = 0

rized based on the computed class labels and the pixels of each

category are sorted in descending order based on the maximum

probability in each pixel. Then, by employing the SVM accu-

racy assessment results, the minimum value between user and

producer accuracies of each class are used to select the propor-

tion of pixels with the higher probability in each category. These

selected pixels in each category are assumed to be reliably clas-

sified.

For a given pixel amongst the selected pixels of each category,

the maximum probability should belong to the P(Yi | `i = α) and

other probabilities of that pixel belong to P(Yi | `i = β ). Then

the means of pixels in each category were computed using ∆U ι
αβ

(13). In the next step, each mean vector of ∆U ι
αβ

is normalized

and a square matrix of ∆U ι
αβ

with size M was generated (see

Table 1). This matrix is a zero diagonal square matrix, because

each element on its diagonal indicates ∆U ι
αα is zero.

Then, the class label of the neighbours of each pixel in each cate-

gory are extracted to compute the CLCMC and GCLCMC, which

are square matrices of size M. Let NP be the number of pixels

for a class ωi; since the second order MRF neighboring system

is chosen, each pixel Yi is surrounded by NS = 8 pixels Yi. The

CLCMC index is calculated for pixels of each class ωi as:

CLCMCCωi,ω j
=

1

NP ⇥Ns

NP

∑
i=1

Ns

∑
s=1

δ (`c,ωi)δ
(

`s,ω j

)

(14)

CLCMCωi,ω j
shows the probability of co-occurrence of class ωi

with other classes ω j. In this equation, `c is the class label of a

given pixel (i) of the category and `s is the class label of surround-

ing pixel s. Due to the MRF neighboring concept which says that

1) a site cannot be a neighbor with itself i /2 N0
i ; and 2) the neigh-

borhood relationship is mutual (i 2 N j() j 2 Ni) (Levitan and

Herman, 1987), CLCMC is converted to GCLCMC to show the

global spatial frequency distribution of each pair of classes in the

image:

GCLCMCωi,ω j
= CLCMCωi,ω j

+CLCMCω j ,ωi
(15)

The index of GCLCMC indicates the probability that a given pixel

with true label (α) is misclassified as a false label (β ) due to the

spatial energy. Therefore, ψαβ for each pair of classes (ψαβ ) is

the corresponding element of GCLCMC matrix for classes α and

β . Although the general concepts of the CLCMC and GCLCMC

indexes are similar to the concepts of class label co-occurrence

matrix of the blocks (CLCMB) and global class label co-occurrence

matrix of the blocks (GCLCMB) which we proposed earlier (Aghighi

et al., 2014), for this paper both CLCMC and GCLCMC are nor-

malized and indicate the probability of co-occurrence of class ωi

with another classes ω j in each category over the whole image.

In the next step, the global matrix ∆U ι
αβ

and ψαβ are used to

compute λαβ for each pair of classes using Eq. (12). Finally, the

optimized smoothing parameter λ ⇤ is computed by averaging the

estimated smoothing parameter λαβ for each pair of classes ( 16)

(Aghighi et al., 2014):

λ ⇤ =
∑

M
α=1 ∑

M
β=1

λαβ

M (M−1)
(16)

2.2 Edge preserving

The first step for preserving the edges is to determine the edge lo-

cations. Hence, we employed five of the best known edge detec-

tion methods including to Canny (Canny, 1986), Sobel (Roushdy,

2006), Roberts (Jain et al., 1995), Prewitt (Prewitt, 1970), Lapla-

cian of Gaussian (Marr and Hildreth, 1980) to extract the binary

edge map Ii, as well as utilize the different curvature indicators to

generate the curvature edge indicator Di in each case (21) (Chen

et al., 2010b). Since conflicting information is derived from the

different wavelengths in hyperspectral images, Ii and Di were

computed for each image band (B-band). Then a one-band edge

probability map from the B-band image (nb) is computed by us-

ing (17) for the Canny, Sobel, Roberts, Prewitt and Laplacian of

Gaussian as well as (18) for different curvature indicators.

w(i) = 1− 1

nb

nb

∑
i=1

I(i) , 0 < w(i)  1 (17)

w(i) = 1− 1

nb

nb

∑
i=1

D(i)

max
⇣

D(i)

⌘ (18)

In order to preserve the small structures and edges in the classified

map, the spatial energy component (3) can be formulated as (19

or 20)(Aghighi et al., 2014).

UE
spatial (Yi) = ∑

Y j2Ni

w(i)

(

1−δ
(

`i, ` j

))

(19)

UE
spatial (Yi) = ∑

Y j2Ni

g(∇s)
(

1−δ
(

`i, ` j

))

(20)

where the superscript E refers to the edge probability map and

w(i) can be computed using (17 or 18) based on edge detection

method and g(∇s) can be calculated using (24).

2.3 Different curvature indicator

This edge indicator was developed by Chen et al (2010) and called

different curvature indicator. It can effectively distinguish edges

from areas with flat and ramp intensity distributions in the image

data (Chen et al., 2010b). The difference curvature Di for a given

pixel i of the image is defined as:

D(i) =
∣

∣

∣

∣

∣

∣
uηη (i)

∣

∣

∣
−
∣

∣

∣
uεε (i)

∣

∣

∣

∣

∣

∣
, (21)

where uηη and uεε represent the second derivation of the gradi-

ent ∇u and perpendicular to ∇u, respectively, and |.| denotes the

absolute value

uεε =
u2

xyuxx +2uxuyuxy +u2
xuyy

u2
x +u2

y

(22)

uηη =
u2

xuxx +2uxuyuxy +u2
yuyy

u2
x +u2

y

. (23)

In these equations, ux and uxx denote the first and second deriva-

tion in x, respectively, uy and uyy are the first and second deriva-

tion in y, respectively, and uxy indicates the first derivation in y

of the first derivation in x. Table 2 summarizes the behaviour

analysis of the different curvature edge indicator.

2.4 Graduated edge penalty

In order to use the graduated edge penalty, we defined the edge

penalty term g(∇s) which can be any monotonically decreasing

function of edge strength. In this function, the penalty decreases
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Table 2: Behaviour analysis of the different curvature edge indi-

cator (Chen et al., 2010)

uηη uεε Di

Edge pixel large small large

Flat and ramp pixel small small small

Noise pixel large large small

as the edge strength increases between two groups of pixels as-

signed to different classes; thus all the edges pixels are not pe-

nalized equally. The penalty function is formulated as (Yu and

Clausi, 2008):

g(∇s) = e−(∇s/K)2

, (24)

where ∇s represents the normalized gradient magnitude (∇s 2
[0,1]) as the edge strength measurement on site s. K is a positive

value that controls the strength of the edge penalty term. By in-

creasing K to infinity, all the edges penalties are equal to 1; and by

gradually increasing K, the edges are penalized differently based

on the strength or weakness of the edge gradient magnitude (Yu

and Clausi, 2008). In order to calculate ∇s, Equation (25) which

is based on the gradient magnitude
p

ϑ on site s was used (Yu et

al., 2012):

∇s =
p

ϑ/maxs2S

p
ϑ , (25)

where ϑ can be computed using (Lee and Cok, 1991):

ϑ =
1

2

✓

ps +qs +

q

(ps +qs)
2 −4

(

psqs − ts2
)

◆

(26)

Each of the variables of (26) can be estimated as:

ps =
Nb

∑
b=1

 

∂Y
(b)

i

∂x

!2

(27)

ts =
Nb

∑
b=1

 

∂Y
(b)

i

∂x

! 

∂Y
(b)

i

∂y

!

(28)

qs =
Nb

∑
b=1

 

∂Y
(b)

i

∂y

!2

(29)

In order to compute ϑ , its items can be calculated using:

psqs − ts
2 =

Nb

∑
b1=1

Nb

∑
b2=1

 

∂Y
(b1)

i

∂x

∂Y
(b2)

i

∂y
− ∂Y

(b2)
i

∂x

∂Y
(b1)

i

∂y

!2

(30)

Therefore, psqs − ts
2 ≥ 0 and ps +qs ≥ λ . Since

ps +qs =
Nb

∑
b=1

 

∂Y
(b)

i

∂x

!2

+

 

∂Y
(b)

i

∂y

!2

=
Nb

∑
b=1

k ∇Y
(b)

i k2,

(31)

where
∂Y

(b)
i

∂x
and

∂Y
(b)

i

∂y
denote the first partial derivatives of the

bth univariate band of image Y on site i with respect to vertical

and horizontal directions.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In order to compare the performance of the proposed method with

our previous method (Aghighi et al., 2014), the same sets of train-

ing and test pixels for each image were selected by the stratified

random method (Foody, 2004), which can be found in (Aghighi et

al., 2014). In this research, two benchmark hyperspectral datasets

and all classes were collected to evaluate the proposed smoothing

parameter estimation method.

1) The Indian Pines image: This hyperspectral image was recorded

by the AVIRIS sensor from Indian Pines test site which was an

agricultural area in North-western Indiana, USA. The image com-

prises 145 by 145 pixels with 20 m/pixel spatial resolution and

200 spectral bands within a wavelength range of 0.4 to 2.5 m. The

reference map contains sixteen classes, namely Alfalfa, Corn-

notill, Corn-min, Corn, Grass-pasture, Grass-trees, Grass-pasture-

mowed, Hay-windrowed, Oats, Soybean-notill, Soybean-mintill,

Soybean clean, Wheat, Woods, Buildings-Grass-Trees-Drives and

Stone-Steel-Towers.

2) The Pavia University image: The Pavia University hyperspec-

tral image was recorded by ROSIS sensor from Pavia district in

north Italy (Figure 2(a)). This dataset comprising of 610 by 340

pixels with spatial resolution of 1.3m and 103 spectral bands. The

reference map (Figure 2(b)) contains sixteen classes, namely as-

phalt, meadows, gravel, trees, painted metal sheets, bare soil, bi-

tumen, self-blocking bricks and shadows.

In order to evaluate the procedure on non-Gaussian data, we also

simulated a 210 by 250 pixel test image using fully polarized

L-band data from Phased Array type L-band Synthetic Aperture

Radar (PALSAR) sensor at the Japanese Advanced Land Observ-

ing Satellite (ALOS)(Pantze et al., 2014). The quad polarizations

data (HH, HV, VH and VV) was selected to reach the best clas-

sification results (Doulgeris et al., 2011). After pre-processing of

the data using software package (NEST version 5.0.12) provided

by ESA (European Space Agency), some samples of five class,

namely water, forest, urban, farm and open field were extracted.

Then, they utilized to produce a simulated PALSAR data (Fig.

1(b)), such that each class has at least on boundary to every other

classes (Fig. 1(a)) (Doulgeris et al., 2011). The produced data is

non-Gaussian distributed due to using high resolution image and

highly textured regions (Doulgeris et al., 2011).

(a) (b)

(c) (d)

Figure 1: Simulated PALSAR data . (a) Reference data ((1) wa-

ter, (2) Forest, (3) Farm, (4) Urban and (5) Open field). (b) Sim-

ulated image (R (VH), G (HV), and B (HH)). (c) SVM pixelwise

classification map. (d) SVMMRFclassification map.

In this research, the probabilistic one-versus-one SVM classifi-

cation method was adopted as a nonlinear classifier through the

use of Gaussian radial basis function (RBF) kernel for hyper-

spectral data (Tarabalka et al., 2010), as well as for simulated
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ALOS PALSAR data (Sambodo and Indriasari, 2014). The opti-

mal SVM parameter C and γ were chosen by fivefold cross valida-

tion (Aghighi et al., 2014). The SVMLIB library (Chang and Lin,

2011) was used to estimate the probability of individual classes

for each pixel and produce the classification map (see Fig. 1(c)

and Fig. 1(c)). Then, the results of SVM classification were

used to estimate the smoothing parameter λ ⇤ for both hyperspec-

tral dataset and classify the image using MRF (Table 3). The

smoothing parameters for simulated PALASAR data were esti-

mated based on the current method and (Aghighi et al., 2014)

(Table 4).

Table 3: The estimated smoothing parameter (λ ⇤) for MRF

Studying area Indian pines Pavia University

λ ⇤ 0.976 0.943

Table 4: The estimated smoothing parameter (λ ⇤) for simulated

ALOS PALASAR data
Methodology (Aghighi et al., 2014) Current method

λ ⇤ 0.785 0.895

In order to compare the efficiency of the proposed parameter es-

timation method with (Aghighi et al., 2014) and (Tarabalka et al.,

2010), both hyperspectral datasets were used. Then, the λ ⇤ value

derived in this paper was employed to manage the contribution

of spectral and spatial energies for the both non-edge based MRF

method (Fig. 1(d)) and the edge-based MRF (Fig. 1(e)) by us-

ing our previous edge probability map (Aghighi et al., 2014) (see

Table 5).

The difference between results obtained by applying the proposed

method and (Aghighi et al., 2014) are about -0.48 precent and

with (Tarabalka et al., 2010) are +2.8 precents. Furthermore,

comparisons of the accuracy of maps produced using λ ⇤ and

those produced by (Tarabalka et al., 2010) show that the overall

accuracy of the classification by SVMMRF E for the University

of Pavia data have increased by 6.27 percent and 0.1 percent for

the Indian Pines data (Table 5). Then we evaluated the statistical

significance for each pair of corresponding classification maps in

terms of accuracy by using McNemars test with the 5% signifi-

cance level (Zhang et al., 2011). Due to the calculated χ2 and Z

values, the null hypothesis (H0) of no significant difference be-

tween two corresponding maps accuracy values of this paper and

(Aghighi et al., 2014) is not rejected for both Indian Pines and

University of Pavia images. However, the null hypothesis (H0)

of no significant difference between two corresponding maps ac-

curacy values of this paper and (Tarabalka et al., 2010) for the

University of Pavia is rejected.

In another experiment for non-Gaussian dataset, we utilized SVMMRF

to classify PALSAR simulated image using both estimated smooth-

ing parameters (Table 4). The difference between results derived

by λ ⇤ and (Aghighi et al., 2014) is about 1.9 percent (Table 6).

We evaluated the statistical significance for both Pines and Uni-

versity of Pavia classified maps in terms of accuracy by using Mc-

Nemars test with the 5% significance level (Zhang et al., 2011).

According to the calculated χ2 and Z values, the null hypothesis

(H0) of no significant difference between the classified map ac-

curacy values using λ ⇤ and (Aghighi et al., 2014) is not rejected.

Moreover, the classification accuracy in percentage for each class

of for PALSAR images is presented in Table 7).

As mentioned in Section 2.2, different edge preserving maps are

produced using Canny, Sobel, Roberts, Prewitt, Laplacian of Gaus-

sian operators, different curvature indicator and the graduated

Table 5: Overall accuracy assessment of the classified maps

for SVMMRF method with different smoothing parameters and

SVM for AVIRIS and ROSIS images

Smoothing
Indian pines Pavia University

Parameter
SV MMRF SV MMRF

NE E NE E

(Aghighi et al., 2014) 91.8 92.3 91.5 94.1

(Tarabalka et al., 2010) 92.1 91.8 86.9 87.6

λ ⇤ 91.2 91.9 90.8 93.9

SVM 82.2 82.2 82.2 82.2

edge penalty (17, 18, 24). Then, the new edge preserving in-

formation was incorporated in the MRF using the spatial energy

term (19, 20) to produce the SVMMRF E maps (Table 8).

Table 8 reports the global classification accuracies for all the

datasets using seven edge preserving methods. The computed

overall accuracies and Kappa coefficients in this research show

that SVMMRF E using the edge probability map, in particular

the Canny edge method (Aghighi et al., 2014) results in the best

overall classification accuracies in these experiments. Then, Mc-

Nemars test with the 5% significance level (Zhang et al., 2011)

is used to evaluate the statistical significance between SVMMRF

E using Canny based edge probability map and other edge pre-

serving method. Due to the calculated χ2 and Z values, the null

hypothesis (H0) of no significant difference between Canny based

edge preserving method and others is not rejected for the Univer-

sity of Pavia image. However, the performance of the edge pre-

serving method depends on the datasets, the land cover classes

and the size of misclassified regions in the initial pixelwise clas-

sification map.

Table 6: Overall accuracy assessment of the classified maps for

PALSAR images

SmoothingParameter
PALSAR Simulated Image

Accuracy (%)

(Aghighi et al., 2014) 94.2

λ ⇤ 96.1

SVM 91.4

Table 7: Overall accuracy assessment of the classified maps for

PALSAR images

Class label SVM (Aghighi et al., 2014) λ ⇤

Water 99.9 100 100

Forest 82.1 86 86.4

Farm 66.2 86.9 87.8

Urban 84.1 95.7 96.3

Open field 81.2 79.3 78.4

4. CONCLUSION

In this article, we adress the issue of the automatic smoothing

parameter estimation to manage the contribution of the spectral

and contextual information in the context of MRF classification.

An innovative MRF smoothing parameter estimation method has

been proposed, which is not dependent on assumptions of a spe-

cific statistical distribution of the image data. This method con-

sists of employing SVM classification to produce the probabil-

ity of individual classes for each pixel, followed by two new in-

dexes named CLCMC and GCLCMC to estimate the smoothing

parameter. In addition, the performance of seven edge preserv-

ing techniques using Canny, Sobel, Roberts, Prewitt, Laplacian

of Gaussian operators, different curvature indicator and the grad-

uated edge penalty were evaluated. Experimental results have

demonstrated that the proposed method can estimate the optimal
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(a) (b) (c) (d) (e)

Figure 2: The University of Pavia. (a) Three-band colour composite. (b) Reference data. (c) SVM pixelwise classification map. (d)

SVMMRF-NEclassification map . (e)SVMMRF-Eclassification map.

Table 8: Overall accuracy assessment of the classified maps for

SVMMRF NE and SVMMRF E method using different edge pre-

serving methods; OA (Overall accuracy), AA (Average accuracy),

NE (SVMMRF NE), C (Canny), S (Sobel), R (Roberts), P (Pre-

witt), L (Laplacian of Gaussian), D.C. (Different curvature indi-

cator) and GIED (Graduated edge penalty)

The Indian Pines image

SVM NE C S R P L D.C. GIED

OA 82.2 91.2 91.9 89.9 89.5 89.9 88.7 89.6 88.9

AA 85.1 95.1 95.5 91.7 91.3 91.7 91.7 91.7 92.1

K 0.797 0.901 0.911 0.885 0.880 0.852 0.871 0.882 0.873

The Pavia University

SVM NE C S R P L D.C. GIED

OA 84.8 90.8 93.9 91.7 89.6 89.5 93.7 91.7 92.4

AA 88.0 92.7 94.1 92.6 92.3 92.3 90.6 90.2 93.5

K 0.803 0.885 0.912 0.889 0.858 0.857 0.916 0.889 0.899

smoothing parameter for both non-Gaussian and Gaussian dis-

tributed data. Furthermore, the edge probability map using Canny

filter yields accurate classification maps for both hyperspectral

datasets.
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