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ABSTRACT. This paper surveys existing necessary conditions, and gives new condi-

tions based on homogeneous resonance, for a homogeneous system to admit a homoge-

neous (of correct order) continuous, asymptotically stabilizing, state, feedback control.

Such conditions are basic in utilizing high order, homogeneous, approximations of non-
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linear systems to construct asymptotically stabilizing feedback controls when linear

approximations of the nonlinear system are not locally controllable. For a class of

three dimensional, homogeneous, locally controllable, systems, we determine at which

resonance values they can be stabilized.

INTRODUCTION. If a linear approximation of a nonlinear control system admits a

linear asymptotically stabilizing feedback control (hereafter ASFC) this control is also

a local ASFC for the nonlinear system. It is well known that if a linear approximation is

controllable, it admits a linear ASFC and the construction of such is known. If a linear

approximation is not controllable, it is possible that a (higher order) homogeneous,

nonlinear, approximation is small time locally controllable (STLC), (see [Su],[K4],[AL]),

and if such an approximation admits a continuous homogeneous ASFC (of appropriate

order) then it also is a local ASFC for the original system [BS],[H2],[S]. This is the

major motivation for developing necessary and sufficient conditions that a homogeneous

system admit a continuous, homogeneous ASFC. In [G], Grüne studies the existence of

a discontinuous, homogeneous, ASFC. The main result of this paper is a new necessary

and sufficient condition, based on homogeneous resonance [A2], for a class of three

dimensional, nonlinear, systems. Some modern control systems have linearizations

which are not controllable, thereby giving the system ”quick response” but still rely

on control for stabilization. The high order approximation of such systems is often

a high order, homogeneous approximation [H2]. Kawski [K3] has shown that even if

the homogeneous approximating system is STLC the system need not be stabilizable

by a continuous, homogeneous ASFC. We extend his ideas here. Sepulchre [Sep] has

shown that a STLC homogeneous system may admit a continuous ASFC (but not a

continuous, homogeneous ASFC) but this control need not asymptotically stabilize a

nonlinear system having this homogeneous approximation.
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For uncontrolled systems the interplay between resonance and instability is well

illustrated by the Tacoma Narrows bridge. This paper deals with the problem of deter-

mining at which resonance values an STLC nonlinear control system can be stabilized.

This is answered for a class of three dimensional systems.

For ε > 0 a dilation is a mapping δrε : Rn → Rn, δrε(x) = (εr1x1, . . . ε
rnxn), with

r1, . . . , rn positive integers. A real valued function f is said to be homogeneous of degree

k with respect to a dilation δrε if f(δrεx) = εkf(x). We let Hr
k(δ

r
ε), or just Hr

k if the

dilation is understood, denote continuous functions homogeneous of degree k. Note

that Hr
k need not be finite dimensional, e.g. we will consider controls u ∈ Hr

k and for,

say, r = (1, 3), u(x) = (x3
1+x2)

1/3 is homogeneous of degree one. The notationHr,l(δrε)

or Hr,l when the dilation is obvious, will be used to denote analytic vector fields,

homogeneous of degree l with respect to δrε . A vector field X ∈ Hr,k if for all smooth

f ∈ Hr
l , Xf ∈ Hr

l−k, l ≥ k. In local coordinates, if X(x) =
∑n

i=1 ai(x)∂/∂xi then

X is homogeneous of degree k if ai is analytic and in Hr
ri−k, i = 1, . . . , n. H1,l will

denote analytic vector fields, homogeneous of degree l with respect to the standard

dilation δ1ε having r1, . . . , rn = 1. For fixed r, l, Hr,l is a finite dimensional vector

space.

In what follows we examine four three-dimensional STLC control systems. Each

contains a parameter k > 0: each is homogeneous with respect to the dilation δrεx =

(εx1, ε
3x2, ε

9x3),and each has an uncontrollable linearization and unstable uncontrolled

dynamics. The problem is to determine values of k for which there exists a continuous,

asymptotically stabilizing, state feedback control u which is homogeneous of degree one

with respect to δrε i.e. u ∈ Hr
1.

A main result (see theorem 1) is that if k is a homogeneous resonance value,

[A2], for which the system can be transformed into a homogeneous normal form, an
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extension of the Poincaré normal form, (hereafter Ancona normal form), there exists a

free constant in the normal form which can be used to show that a homogeneous ASFC

does not exist. If k is not a resonance value the system does transform to Ancona normal

form and the existence of a continuous, homogeneous, ASFC is proved. For some such

(limited values) k, Sepulchre, [SEP], gives an elegant geometrical construction based

on work of Coron-Praly, [CP], and Kawski, [K3], to show existence of a homogeneous

ASFC. This is extended in theorem 1 to all nonresonance values by constructing a

system containing a free parameter which is diffeomorphic to the original system. The

parameter can then be chosen to extend the Sepulchre construction. We also include

open problems and conjectures. Some basic results for the four systems depend on two

theorems, one due to Coron–Praly [CP],(discussed in Appendix A1-1), the other due to

Kawski, [K2], and material found in the doctoral thesis of R. Sepulchre [Sep]. The use

of the Coron–Praly theorem, as given in R. Sepulchre’s doctoral thesis, is also given in

Appendix A1-1.

The four systems have the form

ẋ1 = u, ẋ2 = x2 + x3
1, ẋ3 = kx3 + P9(x1, x2) (0.1)

where P9 is a homogeneous polynomial, of degree 9, with respect to δrε . In general, we

denote by r = (r1, . . . , rn) the dilation exponents. For our above systems the dilation

is r = (1, 3, 9).

Kawski Resonance, Homogeneous Resonance, and Kawski’s theorem.[K3],[A1].

Homogeneous Resonance [A1]. Let X be an analytic vector field homogeneous of

degree zero with respect to a dilation δrε . Expand X(x) = Ax+(higher order terms

with respect to the standard dilation). Let λ1, · · · , λn, denote the eigenvalues of A.

Then A is said to be homogeneous resonant of order l with respect to δrε if there exist
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relations of the form

λi =
n
∑

s=1

νsλs, ri =
n
∑

s=1

νsrs

with ν1, · · · , νn non negative integers,
∑n

s=1 νs = l, with l ≥ 2. If there is no resonance

of any order, A is said to be non resonant.

REMARK 0-1. It is basic to note that changing the first equation in (0.1) to be

ẋ1 = ax1 + v, which can always be done by introduction of the new control v(x) =

u(x)− ax1, does not change the existence, or lack of existence, of an ASFC. However,

the term ax1 can change the resonance values! We will always absorb terms in the first

equation which are homogeneous of degree one into the control and thereby have the

first equation ẋ1 = u(x).

Theorem. (Ancona [A1]). Let X be a real analytic vector field, homogeneous of

degree zero with respect to the dilation δrε . If the linear part A of X is non resonant

with respect to δrε there exists a real analytic, homogeneous, coordinate change (a dif-

feomorphism of Rn) which preserves homogeneity and transforms X to its linear part.

Remark 0-2. As we shall see, non resonance is sufficient, but not necessary, to trans-

form X to its linear part, preserving homogeneity.

Let A(x) denote the vector field Ax and adA be defined by (adA,v)=[A,v], the

Lie product of the vector fields. A key step in the proof of Ancona’s theorem is that if

A has resonance of order l then the linear map adA : Hr,0 ∩H1,l−1 → Hr,0 ∩H1,l−1 is

not onto, i.e. has a nontrivial kernel.

Definition Let X , Y be real analytic vector fields homogeneous of degrees zero and

minus one, respectively, with respect to the dilation δrε . If the system ẋ = X(x)+uY (x)

can be transformed to ẏ = Ay + uZ(y), where A is the linear part of X , and Z ∈ Hr,1

we call the latter a homogeneous Ancona normal form of the former. This normal
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form need not be unique.

Suppose the nonlinear systems (0.1) can be transformed to “Ancona normal form”,

i.e. there exists a change of variable which transforms system (0.1) to the form

ẏ = Ay + uY (y), A = A(k) =





0 0 0
0 1 0
0 0 k



 . (0.2)

Let R =





1 0 0
0 3 0
0 0 9



 . The vector field Ry is called the Euler field associated with the

dilation δrε .

Kawski’s Theorem [K1] [K2]. If there exists a c ≥ 0 such that rank (A− cR) ≤ 1,

then system (0.2) has Kawski resonance (for the given value of k) and system (0.2),

hence also system (0.1), does not admit an asymptotically stabilizing, feedback control

(hereafter ASFC) in Hr
1.

Coron-Rosier Lemma [C1]. Assume the n dimensional system (i) ẋ = F (x) is

homogeneous with respect to a dilation δrε , r = (r1, . . . , rn). Let R be the diagonal

matrix R=diag (r1, . . . , rn)and assume the null solution of (i) is asymptotically stable.

Then:

(a) For m ≥ rn+1, system (i) admits a Lyapunov function V(x) which is homogeneous

of degree m with respect to δrε and is C1 on Rn − {0}.

(b) Any homogeneous Lyapunov function V for system (i) is also a Lyapunov function

for ẋ = F (x)− cRx, c > 0.

(c) The null solution of ẋ = F (x)− cRx is also asymptotically stable for any c ≥ 0.

In section 1 we will present four examples, each of the form (0.1) and homogeneous

with respect to the dilation δrεx = (εx1, ε
3x2, ε

9x3) and STLC at the origin. This means

that the first Brockett necessary condition, [B], for the existence of a continuous ASFC

(i.e. that there exist open loop controls which drive initial points near the origin toward
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the origin as t → ∞) is satisfied.

From (0.1) we see each example will have the same linear part with matrix A

having eigenvalues λ1 = 0, λ2 = 1, λ3 = k and dilation exponents r1 = 1, r2 = 3, r3 = 9.

Homogeneous resonance occurs at k = 3, 2, 1, 0. Indeed:

λ3 = 3 = 3λ2 + 0λ1, r3 = 9 = 3r2 + 0r1

showing k=3 gives resonance of order 3.

λ3 = 2 = 2λ2 + 3λ1, r3 = 9 = 2r2 + 3r1

showing k=2 gives resonance of order 5.

λ3 = 1 = 1λ2 + 6λ1, r3 = 9 = 1r2 + 6r1

showing k=1 gives resonance of order 7.

λ3 = 0 = 0λ2 + 9λ1, r3 = 9 = 0r2 + 9r1

showing k=0 gives resonance of order 9.

We will be interested only in the case k > 0 for which it easily follows that, with

the examples in their initial form, the following necessary condition is satisfied.

Brockett necessary condition (iii), [B]. A necessary condition that system (0.1)

admit a continuous ASFC is that

{(u, x2 + x3
1, kx3 + P9(x1, x2)) : x ∈ Rn, u ∈ R1}

covers a neighborhood of the origin in R3.

Note. To utilize the Coron-Rosier lemma in (0.1) one must assume the control u is

homogeneous. Then the Brockett condition (iii) becomes a necessary condition for the

existence of a continuous homogeneous ASFC.
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Hereafter we consider k > 0. All examples have homogeneous resonance at k =

1, 2, 3.

Transforming system (0.1) to Ancona normal Form. The general transform of

(0.1) to Ancona normal form proceeds as follows. Let

y1 = x1, y2 = x2 + x3
1, y3 = kx3 + f(x1, x2) (0.3)

or y = φ(x), where f is a δrε homogeneous polynomial of degree 9. Specifically, for our

examples, we choose

f(x1, x2) = ax3
2 + bx3

1x
2
2 + cx6

1x2 + ex9
1. (0.4)

It is useful to leave the transformation of system (0-1) in the form

ẏ1 = u, ẏ2 = y2 + 3y21u, ẏ3 = k(kx3 + P9(x1, x2)) + fx2
(x2 + x3

1) + fx1
u.

Thus to obtain Ancona normal form we need

kP9(x1, x2) + (x2 + x3
1)fx2

(x1, x2) = kf(x1, x2) (0.5)

which yields simple linear equations to determine the constants a, b, c, e by equating

like powers of x1, x2. If (0.5) can be satisfied the system (0.1) transforms to

ẏ1 = u, ẏ2 = y2 + 3y21u, ẏ3 = ky3 + fx1
(φ−1(y))u.

At resonance values k, the transform may not exist, or if it exists, it is not unique, i.e.

the constants a, b, c, e are not uniquely determined.

THEOREM 1. (A) The systems (1.1.1),(1.2.1),(1.3.1), (1.4.1), below, do not admit

an ASFC in Hr
1 at a resonance value k for which they can be transformed to Ancona

normal form.

(B) A continuous, homogeneous, ASFC does exist for all other values k > 0.
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SECTION 1. THE FOUR EXAMPLES & THE ROLE OF RESONANCE.

1.1. Example 1. (Kawski)

ẋ1 = u, ẋ2 = x2 + x3
1, ẋ3 = kx3 + x9

1. (1.1.1)

For any k 6= 0 this can be transformed to the Ancona normal form, i.e.

ẏ1 = u, ẏ2 = y2 + 3y21u, ẏ3 = ky3 + 9y81u. (1.1.2).

By using the Coron-Praly theorem to eliminate the integrator and the construction, as

given in the appendix, Theorem A-1, it is shown in [Sep, §6.2.1]:

(1-A) System (1.1.1) has an ASFC in H1(δ
r
ε) if k < 1 or k > 3.

(1-B) From (1.1.2) and Kawski’s theorem, there is no ASFC in H1(δ
r
ε) if k = 3. (Using

the Coron-Rosier lemma, subtract (1/3)Ry from the right side of (1.1.2) and the

resulting system is easily shown to not satisfy the Brockett necessary condition

(iii). The Brockett necessary condition (iii) is a vector field index condition, hence

invariant under a coordinate change, such as transforming to Ancona normal form.

The index can, however, be changed by subtracting cRy, c > 0.)

(1-C) For k ∈ [1, 3) it was unknown if there exists an AFSC in Hr
1. A consequence of

theorem 1 is that there is no such for k = 1, 2 but there is such for k ∈ (1, 2) and

k ∈ (2, 3).

For the resonance value k = 1, of order 7, system (1.1.1) admits the Ancona normal

form

ẏ1 = u, ẏ2 = y2 + 3y21u, ẏ3 = y3 + (6cy51y2 + 3cy81 + 9y81)u. (1.1.3)

Here the freedom in the normal form arises from the fact that the vector field v7(x) =

(0, 0, cx6
1x2) is not in the range of adA : Hr,0 ∩ H1,6 → Hr,0 ∩H1,6.
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For the resonance value k = 2, system (1-1) admits the Ancona normal form

ẏ1 = u, ẏ2 = y2 + 3y21u, ẏ3 = 2y3 + (3cy21y
2
2 + cby51y2 + 9y81)u. (1.1.4)

For resonance value k = 3 the Ancona normal form is

ẏ1 = u, ẏ2 = y2 + 3y21u, ẏ3 = 3y3 + (9cy21y
2
2 + 9y81)u. (1.1.5)

One can get a reduced order, related, system to (1.1.1) as follows. Multiply the

first equation by 3x2
1, define v = 3x2

1u, y1 = x3
1, y2 = x2, y3 = x3 getting the

system

ẏ1 = v, ẏ2 = y2 + y1, ẏ3 = ky3 + y31 . (1.1.1a)

This system is homogeneous with respect to the dilation δrε having r = (1, 1, 3), again

k = 1, 2, 3 are resonance values. The Sepulchre analysis of system (1.1.1a) is exactly

the same as that for system (1.1.1) and the known results (1-A), (1-B), (1-C), above,

hold for system (1.1.1a) also. One should note that knowing an ASFC v for system

(1.1.1a) does not mean one can recover such (or that such even exists) for system

(1.1.1). System (1.1.1a) is often referred to as the dynamic extension of the planar

system

ẋ1 = x1 + u, ẋ2 = kx2 + u3. (1.1.1b)

Sepulchre, [Sep, theorem 6.3] shows system (1.1.1b) does not admit a continuous ASFC

for k ∈ (1, 3]. A theorem of Coron-Praly-Rosier (see [Sep, Theorem 5.4]) states that

if (1.1.1b) admits a continuous, homogeneous, ASFC then so does system (1.1.1a).

The converse need not, in general, be true so the fact that (1.1.1b) does not admit a

continuous ASFC for k ∈ (1, 3] does not mean (1.1.1a) has no continuous ASFC for

k ∈ (1, 3].
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1.2. Example 2.

ẋ1 = u, ẋ2 = x2 + x3
1, ẋ3 = kx3 + x6

1x2. (1.2.1)

For k 6= 1, this can be transformed to the Ancona normal form,

ẏ1 = u, ẏ2 = y2 + 3y21u, ẏ3 = ky3 +

[

6ky51y2
(k − 1)

+
3(3− 2k)

(k − 1)
y81

]

u. (1.2.2)

By eliminating the integrator and using the Sepulchre approach one can show (see

Appendix A2-1):

(2-A) System (1.2.1) has an ASFC in Hr
1 if 0 < k < 3/2.

(2-B) From (1.2.2) and the Kawski theorem, there is no ASFC in Hr
1 if k = 3.

(2-C) For k ∈ [3/2, 3) or k > 3 it was unknown if there exists an ASFC in Hr
1. Theorem

1 shows there is no such for k = 2 while for k ∈ [3/2, 2)∪ (2, 3) and k > 3 such an

ASFC does exist.

For the resonance value k = 2 system (1.2.1) admits the Ancona normal form

ẏ1 = u, ẏ2 = y2 + 3y21u, ẏ3 = 2y3 + [c(3y21y
2
2 + 6y51y2) + 12y51y2 − 3y81]u. (1.2.3)

Since Kawski’s theorem gives the result for k = 3 we will not give the general

Ancona normal form for that resonance value.

The reduced order system associated with system (1.2.1) is

ẏ1 = u, ẏ2 = y2 + y1, ẏ3 = ky3 + y21y2. (1.2.1a).

This system is homogeneous with respect to the dilation δrε having r = (1, 1, 3). Again,

the Sepulchre theorem analysis for (1.2.1a) is exactly the same as that for (1.2.1) and

the results (2-A), (2-B), (2-C) above are valid for system (1.2.1a).

System (1.2.1a) is the dynamic extension of the planar system

ẋ1 = x1 + u, ẋ2 = kx2 + x1u
2. (1.2.1b)
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Sepulchre, [Sep, theorem 6.4], shows that for k = 3 system (1.2.1b) admits a continu-

ous ASFC, but not a continuous, homogeneous ASFC. Indeed, if it had a continuous,

homogeneous, ASFC it would imply the same for system (1.2.1a). But subtracting Ry

from system (1.2.1a) yields a system which fails the Brockett necessary condition (iii)

and hence, by the Coron-Rosier lemma, system (1.2.1a) does not have an ASFC in Hr
1

for k = 3.

1.3 Example 3.

ẋ1 = u, ẋ2 = x2 + x3
1, ẋ3 = kx3 + x3

1x
2
2. (1.3.1)

For k 6= 1, 2, this can be transformed to Ancona normal form,

ẏ1 = u, ẏ2 = y2 + 3y21u, (1.3.2)

ẏ3 = ky3 +
[

3ky2

1
(y2−y3

1
)2

(k−2) +
6y8

1
(3−2k)+12y5

1
y2

(k−1)(k−2)

]

u.

Again, by eliminating the integrator and using the Sepulchre approach on (1.3.1)

one can show

(3-A) System (1.3.1) has an ASFC in Hr
1 if k 6= 3.

(3-B) From (1.3.2) and Kawski’s theorem, there is no ASFC in Hr
1 for k = 3.

The reduced order system associated with system (1.1.3) is

ẋ1 = u, ẋ2 = x1 + x2, ẋ3 = kx3 + x1x
2
2. (1.3.1a)

and properties (3-A), (3-B) apply to system (1.3.1a) also.

Example 4. (Kawski, [K3].)

ẋ1 = u, ẋ2 = x2 + x3
1, ẋ3 = kx3 + x3

2. (1.4.1)

Here, for k 6= 1, 2, 3 this can be put into Ancona normal form,



13

ẏ1 = u, ẏ2 = y2 + 3y21u, (1.4.2)

ẏ3 = ky3 +
[

9ky2

1
y2

2

(k−3)(k−2)
+

18y5

1
y2

(k−2)(k−1)
−

9y8

1

(k−1)

]

u.

As shown by Kawski, and also easily shown by the Sepulchre analysis, system (1.4.1)

has an ASFC in Hr
1 for all k > 0.

1.5 THE ROLE OF HOMOGENEOUS RESONANCE.

While we will deal, here, with theorem 1 which is specific to the four examples,

hopefully the proof extends to the more general result which, at this point we leave as

Conjecture. Consider the analytic, affine, homogeneous, n-dimensional system

ẋ = X(x) + uY (x). (1.5.1)

where X is homogeneous of degree zero with respect to some dilation δrε and Y is

homogeneous of degree one. Expand X = Ax +(higher order terms) and assume the

eigenvalues of A are non negative. If A has homogeneous resonance with respect to δrε

but system (1.5.1) can still be transformed to Ancona normal form, then system (1.5.1)

does not admit an ASFC in Hr
1.

Remark 1.5.1. If A is allowed to have negative eigenvalues the above theorem would

not be true. See example A-2 of the appendix.

The Ancona normal form of example 4 shows singularities at k = 1, 2, 3 (the

homogeneous resonance values). This shows that if one attempts to achieve Ancona

normal form at a resonance value for which a homogeneous ASFC exists, there would

be need for ”huge” control values near the resonance point. This occurs since if we

were to write, in (1.5.1), X(x) = Ax + f(x), at resonance f is not in the range of
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adA. Therefore it can have effect in yielding an ASFC when the system is in the form

ẋ = Ax+ f(x) + uY (x) but the goal of the Ancona form is to remove f .

The Ancona normal form of example 3 has singularities at k = 1, 2 but not at

k = 3. Again, in normal form, the control has huge effect near k = 1, 2 but not near 3.

Here there is an ASFC in Hr
1 except for k = 3. The Ancona normal form of example

2 has a singularity only at k = 1 but not at the other two resonance values k = 2, 3.

Here there is an ASFC in Hr
1 for all k > 0, except for k = 2, 3.

In example 1, there are no singularities in the Ancona normal form, i.e. no strong

control effects near or at the resonance values k = 1, 2, 3. We know an ASFC in Hr
1

exists for k < 1 or k > 3. There is no such at k = 1, 2, 3.

1.6 The proof of THEOREM 1. We will provide, here, only a proof of the

statement A, with k = 1, 2 of THEOREM 1 relative to the system (1.1.1), the case

of system (1.2.1) being entirely similar. We next show the arguments for statement B

for system (1.1.1) with k = 1.5 and for system (1.2.1) for k = 3/2 and k = 4. The

remaining cases can be shown by similar constructions and therefore are not included.

In the case of system (1.3.1) the conclusions follow from Kawski’s Theorem 1.2 while

system (1.4.1) cannot be transformed to Ancona normal form for any resonance value

and all results are known.

A. We shall begin by showing that there is no ASFC in Hr
1 for the system (1.1.1) for

resonance value k = 1. For the resonance value k = 1, which is of order 7, the Ancona

normal form (1.1.3) can be obtained from the general form (1.1.2) by a coordinate

transformation. Specifically:

z1 = y1, z2 = y2, z3 = y3 + cy61y2 (1.6.1)

where the term cy61y2 results from the resonance of order 7. Assume (1.1.1) has a

homogeneous ASFC for k = 1 which means (1.1.2) has a homogeneous ASFC for k = 1
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which we denote by u0(y). Therefore, for every c, system (1.1.3) has an ASFC denoted

uc. From the variable change (1.6.1), for any c

uc(y1, y2, y3) = u0(y1, y2, y3 − cy61y2) (1.6.2).

Thus to show (1.1.1) does not have an ASFC for k = 1 it suffices to show there

exists a value c∗ for which system (1.1.3) does not admit an ASFC. For k = 1 and

notational ease denote the system (1.1.2) as ẏ = f0(y, u0(y)) and system (1.1.3) as

ẏ = f c(y, uc(y)) where u0, uc are related by (1.6.2).

Construction of c∗ for k=1. Following Kawski, [K3], let ν(x) =
∑

rixi∂/∂xi denote

the Euler vector field (which generates homogeneous rays). Let m = 2r1r2r3. Define

the (smooth) δrε unit two sphere S2
r = {x ∈ R3 :

∑

x
m/ri
i = 1}. Let π : (R3 − 0) → S2

r

be defined by π(x) is that point y ∈ S2
r where the homogeneous ray through x intersects

S2
r . Since π(δrectx) = π(x) for all t, evaluating a t-derivative of the previous at 0 one

finds π∗(ν(x)) = 0. Also, if F (x) =
∑

ai(x)∂/∂xi is a smooth vector field homogeneous

of degree zero, one can compute that the Lie product [F, ν] = 0 and π∗F is well defined,

i.e. for y ∈ S2
r , π∗F (δrecty) = π∗F (y). If y is such that π∗F (y) = 0 then F (y) is a

scalar multiple of ν(y) and this holds along the homogeneous ray through y hence the

solution of ẋ = F (x), x(0) = y lies on the homogeneous ray through y. We proceed

formally for a moment. Choose a value c0 ; define π∗f
c0(z, uc0(z)) as homogeneous

projection of f c0 onto the unit sphere S2
r . Then π∗f

c0 must have a zero on S2
r (it may

have several), say at zc0 = (zc01 , zc02 , zc03 ) and the solution of (1.1.3) through zc0 then

lies on the homogeneous ray through zc0 . Specifically, this ray has the form

z1(t) = zc01 et, z2(t) = zc02 e3t, z3(t) = zc03 e9t.

(a) If zc01 = 0, the solution of (1.1.3) lies in the plane z1 = 0 and the third component

of the solution is unstable.
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(b) For zc01 6= 0, the first two components of the solution y(t) of (1.1.3) through zc0 lie

on the curve

y2/y
3
1 = zc02 /(zc01 )3.

For notational ease let e0 = zc02 /(zc01 )3 and (for later) ei = zci2 /(zci1 )3. Then y2(t) −

e0y31(t) ≡ 0. Differentiating this and combining with the second equation of (1.1.3)

yields

y2(t) = 3y21(t)u
c0(e0 − 1). (i)

If e0 6= 1, from (i), 3y21(t)u
c0 = y2(t)/(e

0 − 1) and the second component of (1.1.3)

becomes

ẏ2 + 3y21(t)u
c0 = y2(t)(1 + (1/(e0 − 1))) = e0y2(t)/(e

0 − 1). (ii)

Notice that e0/(e0 − 1) > 0 iff e0 ∈ (−∞, 0)∪ (1,∞). Therefore, in the case zc01 6= 0, it

follows that the second component of the solution y(t) of (1.1.3) through zc0 is unstable

whenever e0 ∈ (−∞, 0) ∪ (1,∞).

(c) We proceed, by induction, to prove the existence of a constant c∗ and equilibrium

point z∗ of π∗f
c∗ so that the solution of (1.1.3) through z∗ is unstable.

Step 1: Fix c0 ∈ R, let zc0 = (zc01 , zz2c0, z
c0
3 ) be a zero of π∗f

c0 . If either zc01 = 0 or

e0 ∈ (−∞, 0) ∪ (1,∞) we have instability by (a), (b) and we are done. Otherwise we

have zc01 6= 0, e0 ∈ [0, 1] and we may define

c1 = −3/(1 + 2e0) ∈ [−3, 1]. (iii)

Notice that c1 is defined to make the coefficient

[c1(2z
c0
2 + (zc01 )3 + 3(zc01 )3]

of u equal to zero in the third equation of (1-3). Now let zc1 be a zero of π∗f
c1 , c2

be defined by (iii) with e0 replaced by e1, etc. Inductively this defines a sequence

of constants {ci}, with ci ∈ [−3,−1] and points zci−1 ∈ S2
r . If ever z

ci−1

1 = 0 or
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ei−1 ∈ (−∞, 0) ∪ (1,∞) we may stop and the solution of (1-3) through zci−1 will be

unstable. If this does not occur, we obtain sequences {ci}, {z
ci−1} having values in the

compact sets [-3,-1], S2
r respectively, hence there exist subsequences which converge to

c∗ ∈ [−3,−1], z∗ ∈ S2
r .

Note. We need not worry about convergence of {uci} since uc∗ is given in terms of the

assumed stabilizing control u0 by (1.6.2).

Then π∗f
c∗(z∗, uc∗) = 0, c∗ = −3(z∗1)

3/((z∗1)
3 +2z∗2) and the third component of the

solution of (1.1.3) through z∗ satisfies ẏ3 = y3 and is unstable.

Construction of c∗ for Example 1, k=2. With the notation of the previous case

for k = 1, choose a real c0, let z
c0 ∈ S2

r be a zero of π∗f
c0 where now f c0 is given by

(1.1.4) with c replaced by c0. Again, if zc01 = 0 the solution of (1.1.4) lies in the plane

z1 = 0 and the third component of (1.1.4) is ẏ3 = 2y3 and unstable.

If z1 6= 0 and e0 = zc02 /(zc01 )3 ∈ (−∞, 0) ∪ (1,∞), the second component of (1.1.4)

reduces to ẏ2 = e0y2/(e
0 − 1) with e0/(e0 − 1) > 0 and we have instability.

Now to make the coefficient of u equal to zero in the third equation of (1.1.4), formally

we need

c1 = −3(zc01 )6/(zc02 + 2(zc01 )3)zc02

or if zc01 6= 0,

c1 = −3(zc01 )3/(e0 + 2)zc02 . (iv)

If zc02 = 0 the homogeneous ray through zc0 on which the solution of (1.1.4) through

zc0 lies has second component which satisfies ẏ2 = 3y21u. But from the first equation,

3y21(t)ẏ1 = d/dt(y31(t)) = 3y21u so subtracting shows d/dt(y2(t) − y31(t)) = 0, y2(t) −

y31(t) = zc02 − (zc01 )3 = (zc01 )3. But y2(t) ≡ 0 hence y1(t) = −zc01 is a nonzero constant

and this shows instability.

In summary, if either zc01 = 0 or zc02 = 0 or e0 ∈ (−∞, 0) ∪ (1,∞) we may stop since

there would be instability. Thus assumezc01 6= 0, zc02 6= 0, e0 ∈ [0, 1] in which case
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(iv) will define c1 ∈ [−3/2, 3/2] and one can continue, inductively, to obtain sequences

{ci}, {z
ci} which have convergent subsequences converging to a real c∗ ∈ [−3/2, 3/2]

and z∗ ∈ S2
r with the third component of the solution of (1.1.4) through z∗ being

ẏ3 = y3 and hence unstable.

The details for instability, with k = 2 in Example 2 are similar and will be omitted.

B. We begin with seeking the most general system of the form

ẋ1 = u, ẋ2 = x2 + x3
1, ẋ3 = kx3 + P9(x1, x2) (1.6.3)

with k > 0, which has (1.1.2) as its Ancona normal form. For such a system, since both

it and (1.1.1) smoothly transform to the same system, they can be smoothly transformed

to each other and hence one has a homogeneous ASFC if and only if the other also does.

In (1.6.3) choose

P9 = αx9
1 + βx3

2 + γx2
2x

3
1 + δx2x

6
1.

Let f(x1, x2) be given by (0-4), the transform y = φ(x) be given by (0-3) and explicitly,

fx1
(φ−1(y)) = 3by21y

2
2 − 6by51y2 + 3by81 + 6cy51y2 − 6cy81 + 9ey81 .

We use (0.5) to attempt to transform (1.6.3) into (1.1.2). Equating like powers, using

(0.5), requires

a = βk/(k − 3), b = γk/(k − 2) + 3βk/(k − 2)(k − 3), (iii)

c = 2γk/((k− 1)(k − 2)) + 6βk/((k − 1)(k − 2)(k − 3)) + δk/(k − 1),

e = (kα+ c)/k = α + (c/k).

We assume, hereafter, that k 6= 1, 2, 3, i.e. the system we obtain will transform to

system (1.1.2) except at the resonance values. Substituting these into fx1
(φ−1(y))



19

which we need to be equal to 9y81 in order to have the Ancona transform of (1.6.3) be

(1.1.2) requires b = 0 or 2γk(k − 3) + 6βk = 0, c = 0 or δk(k − 2)(k − 3) = 0 which

requires δ = 0, e = 1 or α = 1. Thus, from b = 0, γ = −3β/(k−3) with β arbitrary.

Therefore the most general system of the form (1.6.3) which has Ancona transform

system (1.1.2) is

ẋ1 = u, ẋ2 = x2 + x3
1, (1.6.4)

ẋ3 = kx3 + x9
1 + βx3

2 − 3(β/(k − 3))x3
1x

2
2, k 6= 1, 2, 3.

System (1.6.4) has the advantage of the free constant β. We now use the generalized

Sepulchre method of Appendix A to study system (1.6.4). Sepulchre [Sep] showed that

for 0 < k < 1 and for 3 < k the system (1.1.1) admits a homogeneous ASFC. we next

use THEOREM A-1 (Generalized Sepulchre construction) to show that for 1 < k < 2

and for 2 < k < 3 there does exist a homogeneous ASFC.

Following the construction in appendix A, let

P9(v
1/3, θ) = v3 + βθ3 − ((3β/(k − 3))vθ2.

In short, THEOREM A-1 states:

For P9 depending on both x1 and x2 a sufficient condition that equation (1.6.4) has a

homogeneous ASFC is that there exists a line, having nonzero slope, in the (θ, v) plane

which intersects the set

Z = {(θ, v) : −βθ4 + (3β/(k − 3))vθ3 − (v3 + k − 3)θ + 3v = 0} (1.6.5)

only in points (θ∗, v∗) with either v∗/θ∗ < −1 or

P9((v
∗)1/3, θ∗) < −k, if θ∗ 6= 0.

To illustrate the idea to show such a line is possible consider:

CASE k = 3/2, β = −0.5: ( Here k can be chosen in the open interval(1,2) while

β < 0 is quite arbitrary and all calculations work essentially the same.) Use MATHE-

MATICA to examine (get a geometrical picture of) the set Z in (1.6.5), i.e. the level
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curves of Z. For notational ease let x = θ, y = v in Z. Use ContourPlot (and be sure

to leave spaces between x3 and y and also x and y3) specifically:

ContourPlot[0.5x4 + x3y − xy3 + 1.5x+ 3y, {x,−10, 10}, {y,−10, 10}].

Move the cursor around to find the (obvious) zero level curves. You now want a line,

say y = c1x + c2, which intersects these only in points (x∗, y∗) with y∗/x∗ < −1 or

P9((y
∗)1/3, x∗) < −1.5, x∗ 6= 0. See Fig. 1.
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Example 1, k=1.5, beta=-0.5

Fig 1, system (1.6.4), (k = 3/2, β = −0.5)

Substituting y = c1x+c2 one can use MATHEMATICA to seek these intersections,

i.e.,
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NSolve[0.5x4 + 1x3(c1x+ c2)− x(c1x+ c2)
3 + 1.5x+ 3(c1x+ c2) = 0, x]

For general c1, this is a quartic and will have four roots (x∗, y∗) with at least

one not satisfying THEOREM A.1. HOWEVER, if c1 satisfies the cubic equation

−c31 +1c1 +0.5 = 0 then instead of a quartic in the NSolve one gets a cubic, i.e. the x4

terms vanish. The roots of this cubic are c1 = 1.19149 and then two complex numbers.

(It is instructional to roughly sketch the lines corresponding to c1 with various negative

values of c2 in the MATHEMATICA output of the ContourPlot and see (roughly) where

the lines intersect the zero level curves.) For c2 = −3 there are three real crossings,

with x values x=0.47917, x=1.16964, x=1.41774, and all are ”bad” crossings, i.e. have

y∗/x∗ > −1. For c2 = −8 the line y = 1.19149x − 8 crosses the zero curve of the

ContourPlot at x∗ = 0.047416 with corresponding y∗ = −7.9435 (the other crossings

have complex values, except for x = 3.78063(10)6 which is a numerical round off root

since with an exact value of c1 the cubic in the ContourPlot equation will only have

three roots.) Here y∗/x∗ < −1. Hence (1.6.4) has a homogeneous ASFC for k=1.5

and β = −0.5 and (1.1.1) also has a homogeneous ASFC for k=1.5. (It is instructional

to set β = 0 in the ContourPlot to see how the zero curves (obtained by Sepulchre

[Sep])show an inability to find a line crossing them only at points satisfying Theorem

A-1,and how these zero curves compare with the case β = −0.5.) With β = −0.5 and

any k ∈ (1, 2) or k ∈ (2, 3) the above construction leads to a line satisfying THEOREM

A.2.

For Example 1 with k ∈ (2, 3), say k = 5/2, choose β = −0.2 in (1.6.5) and again choose

a line with slope so that the coefficient of x4 is zero. Here this requires c1 = −0.163054.

Choose the line y = −0.163054x−10 and Mathematica shows this line crosses the curve

Z = 0 with real root x = 0.0299554, two complex roots (and the numerical error root

x = 8.682(10)7 ). The crossing (x∗ = 0.0299554, y∗ = 10.0048) shows Example 1 has a

homogeneous ASFC at k = 5/2.
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We next turn to system (1.2.1) of Example 2 and its Ancona transform system

(1.2.2). The direct approach using the Generalized Sepulchre THEOREM A-1 shows

the existence of a homogeneous ASFC if 0 < k < 3/2. Details showing this direct

approach will not work at k = 3/2 or k > 3 are given in appendix A2-1. We next

briefly outline how to show such a control exists for k ∈ [3/2, 2) ∪ (2, 3) or k > 3.

Again, we seek the most general system of the form (1.6.3) which has system (1.2.2) as

its Ancona transform. Choose f as in (0-4), form (0-5), equate like powers to determine

the constants, and one finds: For k 6= 1, 2, 3:

The most general system of the form (1.6.3) which has Ancona transform (1.2.2) is

ẋ1 = u, ẋ2 = x2 + x3
1, ẋ3 = kx3+ (1.6.6)

(βk/(k − 3))x9
1 + βx3

2 − (3β/(k − 3))x2
2x

3
1 + x2x

6
1, k 6= 1, 2, 3.

Note that if β = 0 we get back system (2-1). For application of THEOREM A-1, here

P9(x1, x2) = (βk/(k − 3))x9
1 + βx3

2 − (3β/(k − 3))x2
2x

3
1 + x2x

6
1.

Again, let x = θ, y = v1/3 in P9(v
1/3, θ) and use MATHEMATICA to graph the

zero curves of Z as given in the appendix by (A-6), with various values of k and β as

illustrations. This leads to

ContourPlot[ −βk
(k−3)xy

3−βx4+ 3β
(k−3)x

3y−x2y2+(3−k)x+3y, {x,−10, 10}, {y,−10, 10}]

In APPENDIX A2-2 it is shown that the direct use ot THEOREM A-1 on system

(1.2.1) for k > 3 will not give the existence of an ASFC in Hr
1 but will for k < 3/2.

We next illustrate the use of the modified system (1.6.6) to show the existence of

a homogeneous ASFC for k = 3/2 by choosing β = −0.2. (This construction works

simililarly for k ∈ (3/2, 2) ∪ (2, 3).) We, again, use MATHEMATICA to plot level

curves of Z. Here

ContourPlot[−.2xy3 + .2x4 + .4x3y − x2y2 + 1.5x+ 3y, {x,−10, 10}, {y,−1, 10}]
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Example 2, k=3�2, beta=-0.2

Fig.2, Ex.2 , system (1.6.6),(k = 3/2, β = −0.2)

From the graph, a line such as y+7 = (−5.4/2)(x− 1) i.e. y = −2.7x− 4.5 seems

reasonable. Solving (via MATHEMATICA), this line has two real intersections with the

zero curve of Z, specifically x∗ = 0.794305, with y∗ = −6.205695 and x∗ = 1.48284 with

y∗ = −8.2071. See fig.2. Thus for each y∗/x∗ < −1 and there exists a homogeneous

ASFC at k = 3/2.

The construction for the existence of a homogeneous ASFC for k ∈ (3/2, 2) and k ∈

(2, 3) is similar.

For k > 3 we take k = 4 as an illustration, the construction being similar for
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Example 2, k=4, beta=-0.1

Fig. 3, Ex. 2, system (1.6.6), (k = 4, β = −0.1)

all k > 3.

With k = 4, choose β = −0.1 and:

ContourPlot [−.4xy3 − 0.1x4 + 0.3x3y − x2y2 − x+ 3y, {x,−10, 10}, {y,−10, 10}].

A line, for example, y = −4.5 has two real crossing of the zero curve of Z at x∗ =

0.582467 and x∗ = 1.02471, both with y∗ = −4.5, hence both crossings satisfy Theorem

A-1 and system 2-1 has a homogeneous ASFC for k=4. Note that here P9(0, x2) = βx3
2

so the horizontal line is permissible. See fig. 3.

For Example 3 the existence of an ASFC in Hr
1 for k 6= 3 is shown in APPENDIX
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A3-1 by direct use of Theorem A-1. �

APPENDIX. The object of study in this section will be a reasonably general, three

dimensional, homogeneous, affine control system for which the uncontrolled dynamics

are unstable and the linearization is uncontrollable. We begin with a general setting

for Sepulchre’s methods, [Sep]. Specifically, we study the system

ẋ1 = u, ẋ2 = k2x2 + x2m+1
1 , ẋ3 = k3x3 + P2l+1(x1, x2) (A.1)

where 0 ≤ m < l are integers and P2l+1(x1, x2) is a homogeneous polynomial of degree

(2l + 1) with respect to the dilation δrε(x) = (εx1, ε
2m+1x2, ε

2l+1x3),i.e.

P2l+1(εx1, ε
2m+1x2) = ε2l+1P2l+1(x1, x2). Most cases of interest will have k2 > 0, k3 >

0, however k2 < 0 is useful for example A-2. If u is continuous and homogeneous of

degree one with respect to δrε we again write u ∈ Hr
1. For such a control u, the vector

field on the right side of (A.1) will be homogeneous of degree zero. We will assume

STLC (which in some cases restricts the values of k ) and seek an ASFC u ∈ Hr
1 for

(A.1). One should note that system (A.1) with k2 > 0, k3 > 0 does satisfy the Brockett

necessary condition (iii). By choosing various polynomials P2l+1 many examples can be

examined. The method used in the analysis of these examples is a generalization of ho-

mogeneous dimensional reduction introduced by Kawski, [K1], [K2], and an abstraction

of the procedure used by Sepulchre [Sep].

The analysis of (A.1) begins by invoking the Coron-Praly theorem, [CP], on the

elimination of the integrator. Let w = x2m+1
1 or x1 = w1/(2m+1) and consider the two

dimensional system

ẋ2 = k2x2 + w, ẋ3 = k3x3 + P2l+1(w
1/(2m+1), x2). (A.2)

Let γr
ε(x2, x3) = (ε2m+1x2, ε

2l+1x3). Then if w is homogeneous of order 2m + 1 with

respect γr
ε , we write w ∈ Hγ

2m+1 and the vector field defined by the right side of (A.2)

will be homogeneous of degree zero with respect to γr
ε as desired.



26

Coron-Praly theorem [CP]. If the homogeneous system (A.2) admits an ASFC in

Hγ
2m+1 then the homogeneous system (A.1) admits an ASFC in Hr

1.

Remark A-1. The proof is not constructive, i.e. knowing the ASFC for (A-2) does

not yield an ASFC for (A-1).

The Coron-Praly theorem reduces the existence problem from dimension three to

dimension two. The reduction to dimension one is a homogeneity reduction, as given

by Kawski [K1], [K2]. Let

α = (2m+ 1)/(2l + 1), θ = x2/x
α
3 , v = w/xα

3 . (A.3)

Notice that θ ∈ (−∞,∞) parameterizes homogeneous curves, i.e. x2 = θxα
3 is a homo-

geneous curve in the plane. The transformation (A.3) may be viewed as homogeneous

projection from the plane to the projective line P1. Since system (A.2) is homogeneous,

the vector field induced on P
1 by the transformation (A.3) is well defined and easily

computed. Indeed

θ̇ = k2θ + v − αk3θ − αθ[(1/x3)P2l+1(w
1/(2m+1), x2)].

For ease of exposition we note that for w ∈ Hγ
2m+1, w1/(2m+1) has weight one while

x2 has weight (2m + 1) relative to γr
ε . Thus a possible term in P2l+1 would be

x
2l/(2m+1)
2 w1/(2m+1). In this case, (1/x3)x

2l/(2m+1)
2 w1/(2m+1) = v1/(2m+1)θ2l/(2m+1).

In general

(1/x3)P2l+1(w
1/(2m+1), x2) = P2l+1(v

1/(2m+1), θ). (A.4)

Thus the induced equation on P
1 is

θ̇ = k2θ + v − αk3θ − αθP2l+1(v
1/(2m+1), θ). (A.5)
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If v∗(θ) is a linear function of θ, say v∗(θ) = c1θ + c2, the control function w which

corresponds to v∗ via (A.3) is w(x2, x3) = xα
3 (c1θ + c2) = c1x2 + c2x

α
3 and this is a

control in Hγ
2m+1. If (θ, v∗(θ)) is a zero of the right side of (A.5) with v replaced by

v∗(θ) then θ corresponds to an invariant homogeneous curve of (A.2). Should values of

θ exist such that (θ, v∗(θ)) is a zero of the right side of (A.5), these will comprise the

ω -limit set of (A.5) with v = v∗(θ). Kawski’s theorem [K2], shows that if the origin

of the restriction of system (A.2) to invariant, homogeneous curves corresponding to

such values θ in the ω-limit set of (A.5) is asymptotically stable, then system (A-2) is

asymptotically stable. (For an odd system such as (A.1), on can replace S1 by P
1 in

Kawski’s theorem.)

Observe that the transformation (A.3) is only defined for x3 6= 0 hence the study

of (A.5) may exclude part of the ω-limit set of system (A.2). Specifically, we also

have to check if the point at infinity of P1 is an equilibrium point for (A-5) or equiv-

alently that the ray through x3 = 0 on S1 in the (x2, x3) space is an invariant

curve of (A.2). This will be the case if w(x2, x3) = c1x2 + c2x
α
3 in (A.2) and if

P2l+1((c1x2 + c2x
α
3 )

1/(2m+1), x2) vanishes at x3 = 0, i.e. if P2l+1((c1x2)
1/(2m+1), x2) =

0. Furthermore, in this case (A-2) shows ẋ2 = (k2 + c1)x2 on this ray. Hence there is

stability if c1 < −k2, instability if c1 ≥ −k2. (Certainly if c1 = 0 and P2l+1(0, x2) = 0

then an unstable solution of (A.2) exists on the ray through the point x3 = 0 on S1 in

the (x2, x3) space but this is not the most general case.) Let

Z = {(θ, v) : k2θ + v − αk3θ − αθP2l+1(v
1/(2m+1), θ) = 0}. (A.6)

We seek a line v∗(θ) = c1θ + c2 which intersects the zero set of Z in points (θ, v∗(θ))

such that the flow of (A.2) on the invariant, homogeneous, curves corresponding to

these values θ is asymptotically stable, i.e. ”contractive”. In order that the flow of

(A.2) be contractive on an invariant, homogeneous, curve it is necessary and sufficient
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that x3ẋ3 < 0 or x2ẋ2 < 0. Computing, using (A.4),

x3ẋ3 = x2
3[k3 + P2l+1(v

1/(2m+1), θ)], (A.7)

x2ẋ2 = x2
2(k2 + v/θ). (A.8)

Thus we have contraction at a point (θ, v) ∈ Z if

P2l+1(v
1/(2m+1), θ) < −k3 or v/θ < −k2. (A.9)

We summarize this construction as

THEOREM A-1, Generalized Sepulchre construction, [Sep]. Consider the

system

ẋ1 = u, ẋ2 = k2x2 + x2m+1
1 , ẋ3 = k3x3 + P2l+1(x1, x2) (A.1)

where 0 ≤ m < l are integers and P2l+1 is a homogeneous polynomial of degree (2l+1)

with respect to the dilation δrε(x) = (εx1, ε
2m+1x2, ε

2l+1x3). Let α = (2m+1)/(2l+1).

A sufficient condition that system (A.1) admit an ASFC in Hr
1 is that there exist a line

v∗(θ) = c1θ + c2 which intersects the zero set

Z = {(θ, v) : k2θ + v − αk3θ − αθP2l+1(v
1/(2m+1), θ) = 0} (A.10)

only in points (θ, v) satisfying (A.9) and if P2l+1((c1x2)
1/2m+1, x2) ≡ 0 then c1 < −k2.

Remark A-2. If a line v∗(θ) = c1θ + c2 exists which satisfies the above theorem,

w∗(x2, x3) = c1x2 + c2x
α
3 will be an ASFC for (A.2) in Hγ

2m+1. The construction of an

ASFC in Hr
1 for (A.1) from w∗ is, to our knowledge, a difficult and open problem.

Remark A-3. The choice of v∗(θ) as a line is convenient but by no means necessary.

Indeed, limθ→∞ v∗(θ)/θ = limθ→ −∞ v∗(θ)/θ suffices. Thus one could consider a

function such as v∗(θ) = (c1θ
1/3+ c2)

3. An interesting (and useful for considerations of

necessity in the above theorem) is the conjecture that if system (A.2) admits an ASFC

in Hγ
2m+1 then it admits an ASFC of the form w(x2, x3) = c1x2 + c2x

α
3 .
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Remark A-4. In the case (θ, v) ∈ Z, θ 6= 0, one can see from (A.6) that

k2 + v/θ = α[k3 + P2l+1(v
1/(2m+1), θ)].

Hence since α > 0 it follows that either the inequalities in (A.9) are both satisfied or

both fail. Thus with θ 6= 0 it is sufficient to only check one.

Remark A-5. If k3 = k2/α and P2l+1(x1, x2) is not only a function of x2 i.e. P2l+1

does depend on x1, then v = 0 is part of the zero set in (A.5) and any line with

c1 6= 0)must cross v = 0. But then P2l+1(0, θ) = 0 hence the homogeneous, invariant,

curve x2 = θxα
3 of (A.2) is not contracting, and there will not be a homogeneous ASFC

for (A.2). Note that in the four examples of section 1, α = 1/3 and k3 = 3k2 is precisely

the condition which yields rank (A − cR) ≤ 1, i.e. Kawski’s theorem, to be invoked

when c = 1/3. However, in general, negative results for (A.2) do not imply negative

results for (A.1), i.e. the converse of the Coron-Praly theorem is not necessarily true,

see [SEP, thm. 5.7].

Examples of the use of Theorem A-1.

Example A-0, (easy example). Consider the system

ẋ1 = u, ẋ2 = x1, ẋ3 = kx3 + x3
1, k > 0. (A.11)

This is example 2.1 in [H4] where a tedious computation using nonlinear regulator re-

sults showed there exists a continuous ASFC. Above, letting X(x) = x1∂/∂x2+(kx3−

x3
1)∂/∂x3, Y = ∂/∂x1 one finds the Lie brackets Y (0), [X, Y ](0) and [Y, [Y, [Y,X ]]](0)

are linearly independent showing the system is odd, STLC, [Su]. To use theorem

A-1, we note that the system is homogeneous with respect to the dilation δrεx =

(εx1, εx2, ε
3x3), i.e. m = 0, l = 1, α = 1/3, P3(x1, x2) = x3

1, k2 = 0, k3 =

k > 0. Next graph the zero set Z = {(θ, v) : v − (1/3)kθ − (1/3)θv = 0} or θ =
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3v/(k − v3). It thus follows that one can always construct a line v∗(θ) = c1θ + c2

with c1, c2 > 0 such that this line is tangent to the branch, in the fourth quad-

rant, of the zero set of Z and has only this tangency point, call it (θ, v), in com-

mon with Z. Since v < −k, θ > 0 in the fourth quadrant, v/θ < 0 = k2. Also,

P3(v, θ) = v3 < −k = −k3. Theorem A-1 applies to show the system (A.10) has an

ASFC in Hr
1.

If we modify equation (A.11) slightly we may lose the existence of an ASFC.

Specifically, consider

ẋ1 = u, ẋ2 = ǫx2 + x1, ẋ3 = 3ǫx3 + x3
1, ǫ > 0. (A.12).

The dilation exponents are r = (0, ǫ, 3ǫ). The eigenvalues of the linear part of the system

are (0, ǫ, 3ǫ) and there is homogeneous resonance. Let R be the matrix R=diag(1,1,3).

The system obtained by subtracting ǫRx from (A.12) fails the Brocket condition (iii)

hence has no continuous ASFC and hence by the Coron-Rosier lemma, system (A.12)

does not have a continuous ASFC. This shows that a first order perturbation can

destroy the existence of a continuous ASFC. Many of the listed results for the four

examples in section 1 were obtained by use of theorem (A-1). The major effort, in

most cases, is the graphing of the zero set Z.

APPENDIX A2-1, Analysis of system (1.2.1) for k = 3. For system (1.2.1), in

theorem A-1, m = 1, l = 4, k2 = 1, k3 = k, α = 1/3, P9(v
1/3, θ) = v2θ and

(θ, v) ∈ Z requires

θ2v2 − 3v + θ(k − 3) = 0. (A2-i)

Case k = 3. For k = 3 the graph of v(θ2v − 3) = 0 consists of the line v = 0 and the

two branches of v = 3/θ2. (See Fig A2-1).



31

v

θ

Fig A2-1 (k = 3)

Any line v = c1θ+c2, c1 6= 0, c2 6= 0, crosses the line v = 0 at a point which does

not satisfy either of the conditions (A.9). A line of negative slope through the origin,

e.g. say v = c1θ, c1 < −1, may cross the branch of the graph in the second quadrant

at a permissible point; its crossing at the origin will not satisfy the first of conditions

(A.9) while the second condition is the indeterminate form 0/0. This condition arises

from the contraction condition x2ẋ2 < 0 which (when not simplified as in (A.9)) is

x2ẋ2 = x2
2 + x2w = x2

2 + x2vx
1/3
3 . (A.13)

Thus when θ = v = 0, x2ẋ2 ≥ 0 , contraction does not occur, i.e. the second of

conditions (A.9) is not satisfied. Thus, as expected, for k = 3 we cannot show the

existence of an ASFC, which agrees with the knowledge from Kawski’s theorem which

shows there is no homogeneous ASFC.

Case k > 3. For k > 3 or k < 3 the zero set (A2-i) is most easily graphed via the two
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quadratic solutions ((θ, v) 6= 0)

v =
3±

√

9− 4θ3(k − 3)

2θ2
, θ =

(3− k)±
√

(k − 3)2 + 12v3

2v2
.

(See figures A2-2,A2-3.)

θ

v

Fig A2-2 (k > 3)

Any line crossing the branch in the second quadrant must also cross the branch in

the first or third quadrant, or at the origin. In the first and third quadrants, v/θ > 0

and at the origin, (A.13) shows failure of x2ẋ2 < 0. A line tangent to the graph at

the minimum point ( 122/3

2(3−k)1/3
,−( (k−3)2

12
)1/3) = (θ, v) having zero slope need not be

cosidered. Also, if a line crosses the branch of the graph twice, in the third quadrant,

one of the crossings must fail the first of conditions (A.9). Since v/θ is positive in the

first and third quadrants, the second of conditions (A.9) cannot be satisfied. Thus we
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cannot conclude the existence of a homogeneous ASFC for (1.2.1) when k > 3 using

the direct approach.

Case k < 3. We refer to figure A2-3.

2/3

3

2

v

θ

9 ,
1/3

1/3
(4(k−3))

2/3

(k−3)

Fig A2-3 (k < 3)

Since v2θ ≥ 0 in quadrants one and four, the first of conditions (A.9) will not

apply. For the second of conditions (A.9), the best possibility will be a line tangent

to the graph at a point on the graph just below the point ( 9
4(k−3)

)1/3, 3/2( 4(k−3)
9

)2/3).

At this point v/θ = 2/3(k − 3) hence (v/θ) < −1 if k < 3/2. One concludes that for

k < 3/2 system (1.2.1) does admit a continuous, homogeneous, ASFC.

APPENDIX A3-1, Analysis of system (1.3.1). For system (1.3.1), in Theorem A-
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1, m = 1, l = 4, k2 = 1, k3 = k, α = 1/3, P9(v
1/3, θ) = vθ2. Then (θ, v) ∈ Z

requires

θ + v − (k/3)θ − θ3v/3 = 0, or v = θ(k − 3)/(3− θ3).

For k = 3 the graph consists of the lines v = 0 and θ = 31/3 and it easily follows (as

expected) that a line satisfying either of conditions (A.9) does not exist. From Kawski’s

theorem, system (1.3.1) does not have a continuous ASFC at k = 3.

3
1/3

v

θ
k
1/3

Fig A3-1 (k > 3)

From figures A3-1, A3-2, it readily follows that lines satisfying the second of condi-

tions (A.9) exist and hence system (1.3.1) has a homogeneous ASFC for k > 3, k < 3

Example A-2. This illustrates that a homogeneous system may have a matrix, A, of

its linear part with resonance, be able to be transformed to Ancona normal form, but
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v

θ
3

1/3
k1/3

Fig A3-2 (k < 3)

if A has even one negative eigenvalue the system may have an ASFC in Hr
1.

ẋ1 = x1 + w, ẋ2 = −x2 + x3
1, ẋ3 = x3 + x9

1. (A.14)

Note that one could absorb the term x1 into the control w in the first equation, which

would change the eigenstructure, and resonance values, but not the existence of an

ASFC. In order to remain in dimension three it is useful to retain the first equation as

it is.

The system is homogeneous with respect to the dilation δrε(x) = (εx1, ε
3x2, ε

9x3)

and STLC at zero. The homogeneous variable change y1 = x1, y2 = −x2+x3
1, y3 =

x3 + x9
1 transforms the system to Ancona normal form ẏ1 = y1 + w, ẏ2 = −y2 +

3y21w, ẏ3 = y3 + 9y81w. The eigenvalues of the linear part are λ1 = 1, λ2 =

−1, λ3 = 1 while r1 = 1, r2 = 3, r3 = 9 and 3λ1 + 2λ2 = λ3, 3r1 + 2r2 = r3
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showing resonance. To show an ASFC in Hr
1 exists we use theorem (A-1) with,

now, x1 + w replaced by u. Then k2 = −1, k3 = 1, α = 1/3, m = 1, l =

4, P9(x1, x2) = x9
1 in (A-1). The zero set of Z is the graph, in the (θ, v) plane, of

θ = 3v/(4+v3) and one can readily construct a line v = c1θ+c2 which is tangent to the

branch of the graph lying in the fourth quadrant at a point (θ, v) with v/θ < −k2 = 1

and having no other points in common with Z. Theorem A-1 gives the existence of an

ASFC in Hr
1 for system (A.14).
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