A Density Model for a Population of Theta Neurons

Abstract : Population density models that are used to describe the evolution of neural populations in a phase space are closely related to the single neuron model that describes the individual trajectories of the neurons of the population and which give in particular the phase-space where the computations are made. Based on a transformation of the quadratic integrate and fire single neuron model, the so-called theta-neuron model is obtained and we shall introduce in this paper a corresponding population density model for it. Existence and uniqueness of a solution will be proved and some numerical simulations are presented. The results of existence are compared to previous results of existence or nonexistence (burst) for populations of leaky integrate and fire neurons.
Type de document :
Article dans une revue
Journal of Mathematical Neuroscience, BioMed Central, 2014, 4 (2), 〈http://www.mathematical-neuroscience.com/content/4/1/2〉. 〈10.1186/2190-8567-4-2〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01068536
Contributeur : Jacques Henry <>
Soumis le : jeudi 25 septembre 2014 - 17:32:21
Dernière modification le : jeudi 11 janvier 2018 - 06:23:41

Lien texte intégral

Identifiants

Collections

Citation

Gregory Dumont, Jacques Henry, Carmen Oana Tarniceriu. A Density Model for a Population of Theta Neurons. Journal of Mathematical Neuroscience, BioMed Central, 2014, 4 (2), 〈http://www.mathematical-neuroscience.com/content/4/1/2〉. 〈10.1186/2190-8567-4-2〉. 〈hal-01068536〉

Partager

Métriques

Consultations de la notice

205