P. J. Bickel, Y. Ritov, and A. B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, The Annals of Statistics, vol.37, issue.4, pp.1705-1732, 2009.
DOI : 10.1214/08-AOS620

URL : https://hal.archives-ouvertes.fr/hal-00401585

G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00440197

P. Bühlmann, Boosting for high-dimensional linear models. The Annals of Statistics, pp.559-583, 2006.

P. Bühlmann and S. Van-de-geer, Statistics for high-dimensional data, 2011.
DOI : 10.1007/978-3-642-20192-9

D. Cacuci, M. Ionescu-bujor, and I. Navon, Sensitivity and Uncertainty Analysis, Volume II: Applications to Large-Scale Systems, 2005.
DOI : 10.1201/9780203483572

E. Candes and T. Tao, The Dantzig selector: Statistical estimation when p is much larger than n, The Annals of Statistics, vol.35, issue.6, pp.2313-2351, 2007.
DOI : 10.1214/009053606000001523

L. Cavalier and N. W. Hengartner, Adaptive estimation for inverse problems with noisy operators, Inverse Problems, vol.21, issue.4, pp.1345-1361, 2005.
DOI : 10.1088/0266-5611/21/4/010

M. Champion, C. Cierco-ayrolles, S. Gadat, and M. Vignes, Sparse regression and support recovery with L 2 -boosting algorithm, 2013.

G. Chastaing, F. Gamboa, and C. Prieur, Generalized Hoeffding-Sobol decomposition for dependent variables - application to sensitivity analysis, Electronic Journal of Statistics, vol.6, issue.0, pp.2420-2448, 2012.
DOI : 10.1214/12-EJS749

URL : https://hal.archives-ouvertes.fr/hal-00649404

G. Chastaing, F. Gamboa, and C. Prieur, Generalized Sobol sensitivity indices for dependent variables: numerical methods, Journal of Statistical Computation and Simulation, vol.1, issue.7, 2013.
DOI : 10.1214/aos/1013203451

URL : https://hal.archives-ouvertes.fr/hal-00801628

T. Crestaux, O. Le-ma??trema??tre, and J. Martinez, Polynomial chaos expansion for sensitivity analysis, Reliability Engineering & System Safety, vol.94, issue.7, pp.1161-1172, 2009.
DOI : 10.1016/j.ress.2008.10.008

D. Veiga, S. Wahl, F. Gamboa, and F. , Local Polynomial Estimation for Sensitivity Analysis on Models With Correlated Inputs, Technometrics, vol.51, issue.4, pp.452-463, 2009.
DOI : 10.1198/TECH.2009.08124

URL : https://hal.archives-ouvertes.fr/hal-00266102

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression. The Annals of Statistics, pp.407-451, 2004.

J. Friedman, machine., The Annals of Statistics, vol.29, issue.5, pp.1189-1232, 2001.
DOI : 10.1214/aos/1013203451

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimization, The Annals of Applied Statistics, vol.1, issue.2, pp.302-332, 2007.
DOI : 10.1214/07-AOAS131

W. Fu, Penalized regressions: the bridge versus the lasso, Journal of computational and graphical statistics, vol.7, issue.3, pp.397-416, 1998.

W. Hoeffding, A Class of Statistics with Asymptotically Normal Distribution, The Annals of Mathematical Statistics, vol.19, issue.3, pp.293-325, 1948.
DOI : 10.1214/aoms/1177730196

G. Hooker, Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables, Journal of Computational and Graphical Statistics, vol.16, issue.3, pp.709-732, 2007.
DOI : 10.1198/106186007X237892

J. Huang, Projection estimation in multiple regression with application to functional anova models. The annals of statistics, pp.242-272, 1998.

J. Jacques, C. Lavergne, and N. Devictor, Sensitivity analysis in presence of model uncertainty and correlated inputs, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.1126-1134, 2006.
DOI : 10.1016/j.ress.2005.11.047

URL : https://hal.archives-ouvertes.fr/hal-00194061

G. Li and H. Rabitz, D-MORPH regression: application to modeling with unknown parameters more than observation data, Journal of Mathematical Chemistry, vol.110, issue.27, pp.1010-1035, 2010.
DOI : 10.1007/s10910-010-9722-2

G. Li, H. Rabitz, P. Yelvington, O. Oluwole, F. Bacon et al., Global Sensitivity Analysis for Systems with Independent and/or Correlated Inputs, The Journal of Physical Chemistry A, vol.114, issue.19, pp.6022-6032, 2010.
DOI : 10.1021/jp9096919

T. Mara and S. Tarantola, Variance-based sensitivity indices for models with dependent inputs, Reliability Engineering & System Safety, vol.107, pp.115-121, 2012.
DOI : 10.1016/j.ress.2011.08.008

URL : https://hal.archives-ouvertes.fr/hal-01093038

H. Rabitz, O. Ali, J. Shorter, and K. Shim, Efficient input???output model representations, Computer Physics Communications, vol.117, issue.1-2, pp.11-20, 1999.
DOI : 10.1016/S0010-4655(98)00152-0

P. Rigollet and A. Tsybakov, Exponential Screening and optimal rates of sparse estimation, The Annals of Statistics, vol.39, issue.2, pp.731-771, 2011.
DOI : 10.1214/10-AOS854

URL : https://hal.archives-ouvertes.fr/hal-00606059

A. Saltelli, K. Chan, and E. Scott, Sensitivity Analysis, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00386559

I. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modeling and Computational Experiment, vol.1, issue.4, pp.407-414, 1993.

I. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, issue.1-3, pp.271-280, 2001.
DOI : 10.1016/S0378-4754(00)00270-6

C. Stone, The use of polynomial splines and their tensor products in multivariate function estimation. The Annals of Statistics, pp.118-171, 1994.

V. N. Temlyakov, Weak Greedy Algorithms, Advances in Computational Mathematics, vol.12, issue.2/3, pp.213-227, 2000.
DOI : 10.1023/A:1018917218956

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, vol.58, issue.1, pp.267-288, 1996.

R. Von-mises, Mechanik der festen körper im plastisch deformablen zustand, Göttin. Nachr. Math. Phys, vol.1, pp.582-592, 1913.

X. Wang and K. Fang, The effective dimension and quasi-Monte Carlo integration, Journal of Complexity, vol.19, issue.2, pp.101-124, 2003.
DOI : 10.1016/S0885-064X(03)00003-7

T. Zhang, Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations, IEEE Transactions on Information Theory, vol.57, issue.7, pp.4689-4708, 2011.
DOI : 10.1109/TIT.2011.2146690

M. Zuniga, S. Kucherenko, and N. Shah, Metamodelling with independent and dependent inputs, Computer Physics Communications, vol.184, issue.6, pp.1570-1580, 2013.
DOI : 10.1016/j.cpc.2013.02.005

. Allées-de-brienne, sebastien.gadat@tse-fr