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Abstract: This paper presents a new approach to solve dynamic decision models in economics.
The proposed procedure, called Nonlinear Model Predictive Control (NMPC), relies on the iterative
solution of optimal control problems on finite time horizons and is well established in engineering
applications for stabilization and tracking problems. Only quite recently, extensions to more general
optimal control problems including those appearing in economic applications have been investigated.
Like Dynamic Programming (DP), NMPC does not rely on linearization techniques but uses the
full nonlinear model and in this sense provides a global solution to the problem. However, unlike
DP, NMPC only computes one optimal trajectory at a time, thus avoids to grid the state space and
for this reason the computational demand grows much more moderate than for DP. In this paper
we explain the basic idea of NMPC together with some implementational details and illustrate
its ability to solve dynamic decision problems in economics by means of numerical simulations
for various examples, including stochastic problems, models with multiple equilibria and regime
switches in the dynamics.
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1 Introduction

The lack of closed form solutions of dynamic decision models with optimizing agents has
generated a large number of computational methods to solve such models. A detailed dis-
cussion of a variety of numerical methods is provided in Santos and Vigo-Aguiar (1998),
Judd (1998), and Grüne and Semmler (2004).4 The latter have proposed Dynamic Pro-
gramming (DP), with grid refinement, to solve a family of continuous and discrete time
dynamic models with optimizing agents. DP provides the value function and the control
variable in feedback form, even for rather complex problems.

In DP a global solution to the optimal control problem is found by first computing an
approximation to the optimal value V and then computing the optimal control from V , see
Grüne and Semmler (2004). Yet, since DP computes the value and policy function at each
point of a grid of the state space, it has the disadvantage that even with an adaptive choice
of the grid its numerical effort typically grows exponentially with the dimension of the state
variable. Hence, already for moderate state dimensions it may be impossible to compute a
solution with reasonable accuracy. As other numerical procedures, applied to solve dynamic
decision models, such as provided by some numerical methods to solve DSGE models, DP
makes strong assumption on the knowledge and information that agents should be endowed
with in the context of an infinite horizon model.

This paper illustrates how Nonlinear Model Predictive Control (NMPC) can be used as an
alternative approach to solve dynamic decision models in economics. NMPC is a well known
method in control engineering which is frequently used in industrial practice, particularly
in chemical process engineering. Traditionally, NMPC is applied to optimal feedback stabi-
lization problems, see, e.g., Rawlings and Mayne (2009) or Grüne and Pannek (2011) and
the references therein. Recently, however, the application of NMPC to more general optimal
control problems has attracted considerable attention, see, e.g., Amrit et al. (2011); Angeli
et al. (2009); Angeli and Rawlings (2010); Diehl et al. (2011); Grüne (2013). Similarly to
DP, NMPC can solve nonlinear dynamic decision problems without having to resort to local
approximations by linearization techniques. However, unlike DP the solution is not found
on a grid in state space. Rather, an infinite horizon trajectory is synthesized by putting
together pieces of finite horizon optimal trajectories, which implies that the numerical effort
of the approach scales much more moderately with the state dimension.

The use of NMPC in an economic context has two different interpretations. On the one
hand, in the references cited above it was shown that, under suitable assumptions, for suffi-
ciently long finite optimization horizon and/or by employing judiciously chosen constraints,
NMPC yields approximately infinite horizon optimal trajectories. On the other hand, due
to the use of finite horizon optimal trajectories, NMPC also allows to study decision making
in a shorter time horizon or agents making decisions over different time horizons. Hence,
compared to the infinite horizon models to be solved with their strong informational re-
quirements, there is much less requirement of information that agents need to have when
making decisions on a finite horizon in the NMPC context. As such, the NMPC approach
can be seen as a particular way to implement the concept of rational inattention in dynamic

4In Grüne (1997) and Grüne and Semmler (2004) an adaptive grid scheme is used for finding global
solutions of models with dynamic optimization. Those numerical methods provide us with approximate
solutions and accuracy estimates for the numerical methods can be employed.
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decision making.

Sims (2005, 2006), in a series of research papers, showed that agents make decisions under
limited information: The information is either not available or the agents respond impre-
cisely to the continuously available information. In this context, we can interpret the NMPC
solutions as based on agents’ decision making using only limited information. Yet, if the
agents information and information processing capacity increases this is likely to approxi-
mate better the infinite horizon decision making5, which is reflected, e.g., in the examples
in Sections 3.1 and 4.2, below. Moreover, NMPC permits to study models with parameter
uncertainties and learning,6 models with multiple equilibria, and jumps and regime changes
in the dynamics. One also can easily track the dynamics of the state variables over a finite
horizon and paths with regime switching. NMPC does not require to know the terminal
or steady state conditions, yet, if such information is available the performance can be
improved by incorporating it into the algorithm as terminal constraints.

The goal of this paper is to evaluate the performance of NMPC via computer simulations for
a selection of dynamic decision models in economics. We consider discounted continuous
time and discrete time optimal decision problems of one to three dimensional economic
models, with one to three control variables. In order to study the ability of NMPC to
approximate the optimal infinite horizon solution, we first want to test our algorithm by
studying the well-known basic growth model of Brock and Mirman (1972) type, for which
the exact solution is known, and recent DSGE extension of it. To study the Brock et al
model allows us to judge the accuracy of our numerical method for a model with short
decision horizon, and to explore what the new method can contribute.

There are, however, in the economic literature more complicated dynamic models with
optimizing agents which have been a challenge to commonly used numerical techniques.
Those models exhibit more complicated dynamics due to the existence of multiple domains
of attraction,7 thresholds and regime changes, parameter uncertainty and learning etc. Ex-
amples of such models can be found in the literature on economic growth,8 macrodynamics
of RBC and DSGE type, in growth models with exhaustible resources, as well as in dynamic
models with the financial sector and credit markets. Multiple steady states and thresholds
can also arise in the dynamic decision problem of the firm, in resource economics and in
ecological management problems.9 Our paper here studies some of the proto-type models
from some of those areas and applies the proposed NMPC to find the global solution.

The remainder of the paper is organized as follows. Section 2 describes the basic strategy
of NMPC. Section 3 solves one dimensional control problems with one and two decision
variables. Here we study the basic growth model for which the exact solution is known and

5Sims notes “. . . the capacity-constrained agent’s behavior approximates that of a fully optimizing agent,
but with a tight capacity constraint his behavior will be much more weakly correlated with external infor-
mation than the behavior of a fully optimizing agent would be.” (Sims; 2006, p. 158)

6See Bréchet et al. (2012)
7If there are local attractors for some equilibria authors characterize them as indeterminant equilibria.

For a survey of models with indeterminacy, see Benhabib and Farmer (1999).
8In the latter type of models a convex-concave production function arises which leads to thresholds

separating paths to low per capita income (poor) countries and high per capita income (rich) countries, see
Skiba (1978) and Azariadis and Drazen (1990).

9For the former see, Feichtinger et al. (2001) and Hartl et al. (2000), for the latter see in particular
Brock and Starrett (1999)
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some extension of it. In Section 4 we then study two dimensional dynamic optimization
models, a stochastic version of the basic growth model, a model with multiple domains of
attraction and threshold, and another one where the paths of the state variables need to be
tracked. Section 5 then presents results for three dimensional models both of the exhaustible
resource type where also the solution paths need to be tracked as well as a credit market
model with regime changes. Section 6 gives details of the numerical implementation and
discusses some known pitfalls of the NMPC method. Section 7 concludes the paper.

2 Nonlinear model predictive control

In this section we describe the basic principles of the NMPC method. Further implemen-
tational details are discussed in Section 6. We consider infinite horizon discounted optimal
control problems, either given in continuous time t ∈ R+

0 by

V (x0) = max
u∈U

ˆ ∞
0

e−δtg(x(t), u(t))dt (2.1)

where

d

dt
x(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn (2.2)

or in discrete time t ∈ N0 given by

V (x0) = max
u∈Ud

∞∑
k=0

βtg(x(k), u(k)) (2.3)

where

x(k + 1) = ϕ(x(k), u(k)), x(0) = x0 ∈ Rn (2.4)

and U and Ud are appropriate sets of control functions and control sequences, respectively.

NMPC as described in the sequel applies to discrete time problems, hence the continuous
time problem needs to be discretized in time in order to apply the method10. To this end,
the continuous time optimal control problem (2.1)–(2.2) is replaced by a first order discrete
time approximation given by

Vh(x0) = max
u∈Ud

Jh(x0, u), Jh(x, u) =
∞∑
k=0

βkgh(x̃(k), u(k)) (2.5)

where β = e−δh, gh(x, u) = hg(x, u) and x̃(k) is defined by the discrete dynamics

x̃(k + 1) = ϕh(x̃(k), u(k)), x̃(0) = x0, (2.6)
10This approach is similar to the first step of the semi-Lagrangian discretization technique for the DP

method going back to Capuzzo Dolcetta (1983) and Falcone (1987) and also described in Grüne and Semmler
(2004).
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where h > 0 is the discretization time step and ϕh is a numerical approximation to the
continuous time solution of (2.2) at time h. If the original problem is of type (2.3)–(2.4),
then it is already in the form (2.5)–(2.6) with h = 1 and x̃(k) = x(k). Since in the remainder
of this section we exclusively deal with discrete time problems, in order to simplify the
notation we will omit the indices h and d and the tilde on x̃(k).

2.1 The idea of NMPC

The idea of NMPC now lies in replacing the maximization of the discrete time infinite
horizon functional (2.3) by the iterative maximization of finite horizon functionals

max
ui∈U

N−1∑
k=0

βkg(xi(k), ui(k)), (2.7)

for a truncated finite horizon N ∈ N with given initial value xi(0) ∈ Rn and xi generated
by the usual dynamics xi(k + 1) = ϕ(xi(k), ui(k)) for k = 0, 1, 2, . . . , N − 1. The index
i indicates the number of the iteration. Note that in the standard case, neither β nor g
nor ϕ changes when passing from (2.3) to (2.7), only the optimization horizon is truncated,
though changes can be allowed for in extensions, see below and Bréchet et al. (2012).

Problems of type (2.7) can be efficiently solved numerically by converting them into a static
nonlinear program and solving them by efficient NLP solvers, implementation details are
discussed in Section 6, below.

Given an initial value x(0), NMPC now generates solutions on an infinite time horizon by
iteratively solving (2.7) as follows:

(1) for i = 0, 1, 2, 3, . . .
(2) solve (2.7) with initial value xi(0) := x(i) and denote the

resulting optimal control sequence by u∗i (·)
(3) set u(i) := u∗i (0) and x(i+ 1) := ϕ(x(i), u(i))
(4) end of for-loop

This algorithm yields an infinite trajectory x(i), i = 0, 1, 2, 3, . . . whose control sequence u(i)
consists of all the first elements u∗i (0) of the optimal control sequences for the finite horizon
subproblems (2.7). In what follows, we refer to the finite horizon optimal trajectories
corresponding to u∗i (·) computed in Step (2) as the open loop trajectories while the trajectory
x(i) computed in Step (3) will be referred to as the closed loop trajectory.

Under appropriate assumptions on the problem, it can be shown that the closed loop
solution (x(·), u(·)) (which depends on the choice of N in (2.7)) approximates the optimal
solution of (2.3) if the time horizon N is sufficiently large. The reason for this at a first
glance surprising behaviour relies on the so called turnpike property, cf. McKenzie (1986).
This property ensures that the finite horizon optimal open loop trajectories pass through
neighbourhoods Bε(x?) of an infinite horizon optimal equilibrium x? with ε→ 0 as N →∞
(for an illustration see Figure 6.12). This behaviour implies that the piece of the finite
horizon optimal trajectory connecting the initial value xi(0) to Bε(x?) is approximately
optimal among all trajectories connecting xi(0) to Bε(x?) and hence also approximately
optimal for the infinite horizon problem since the infinite horizon trajectory will also enter
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Bε(x?). Consequently, since the NMPC closed loop solution is synthesized from these
approximately optimal trajectory pieces, we can also expect it to be approximately optimal.
These arguments are made mathematically precise in Grüne (2013). While the proof in
this reference is carried out for averaged optimal control problems, due to the fact that
the ingredients of the proof are also known to hold for discounted problems, we expect the
same property to hold for the discounted setting considered here which is confirmed by the
numerical example in Section 3.1. In any case, the solution generated by NMPC will always
provide a lower bound for the infinite horizon optimal solution.

As already mentioned in the introduction, in case N is not large enough such that the
NMPC solution approximates the infinite horizon optimal trajectory, the solution still has
a valid economic interpretation as an approximate solution based on decisions taken on the
basis of incomplete information. Here, incomplete refers to the fact that only the future
behaviour on a finite horizon is taken into account in decision making.

Even though (2.7) can typically be efficiently solved numerically, the quality of the solution
strongly depends on the length of the horizon N and for large N sometimes numerical
problems can be observed and the computed solution deteriorates11. If an approximation
of the infinite horizon optimal solution is desired but the problem (2.3) is numerically
infeasible for the needed horizon lengths N , then one can improve the performance by
using the infinite horizon optimal steady state x? as terminal constraint when solving (2.3),
as proposed in Angeli et al. (2009); Angeli and Rawlings (2010); Diehl et al. (2011). More
precisely, in each iteration we perform the maximization in (2.3) only over those control
sequences uk,i for which xN,i = x? holds. Again, the benefit of adding terminal constraints
is so far only rigorously proven for averaged optimal control but the example in Section
3.2 shows that the positive effect of adding this equilibrium terminal constraint is also
visible in the discounted setting. We note that such terminal constraints were only used in
this example; all other computations in this paper were performed without using terminal
(steady state) constraints when solving (2.3).

2.2 NMPC for stochastic problems

Due to the fact that the control generated by the NMPC algorithm is in feedback form, the
basic concept is easily extended to stochastic problems of the type

V (x0) = E

(
max
u∈U

∞∑
k=0

βkg(x(k), u(k))

)
(2.8)

with the discrete time stochastic dynamics

x(k + 1) = ϕ(x(k), u(k), zk), x(0) = x0 ∈ Rn, (2.9)

where the zk are i.i.d. random variables. Again, this problem could be a priori in discrete
time or it could be the time discretization of a continuous time stochastic optimal control
problem with dynamics governed by an Itô-stochastic differential equation, see Camilli and
Falcone (1995).

11It strongly depends on the model for which N these numerical problems become visible. In our examples,
these typically occurred for values around N ≈ 80–100.
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From a computational point of view, the main difficulty in stochastic NMPC is the efficient
solution of the corresponding finite horizon problem (2.7) which now becomes a stochastic
optimal control problem whose solution is computationally considerably more expensive
than in the deterministic case. While some MPC approaches in the literature indeed solve
stochastic optimal control problems (see, e.g., Couchman et al. (2006) or Cannon et al.
(2009) and the references therein), in this paper we follow the simpler certainty equivalence
approach which does in general not compute the true stochastic optimum but in the case of
stochastic perturbations with low intensities typically still yields reasonably good approx-
imately optimal results. To this end, we replace the stochastic dynamics by its expected
counterpart

xe(k + 1) = E
(
ϕ(xe(k), u(k), zk)

)
, xe(0) = x0 ∈ Rn (2.10)

and in each iteration instead of (2.7) we solve

max
ui∈U

N−1∑
k=0

βkg(xei (k), ui(k)). (2.11)

Note that we only use (2.10) in order to solve (2.11) in Step (2) of the NMPC algorithm.
In Step (3) we simulate the closed loop using the original stochastic dynamics (2.9) with
zk realized by appropriate random numbers.

3 One dimensional examples

In this section we describe the application of our NMPC algorithm to a selection of one
dimensional optimal control problems. For some one dimensional models the use of sophis-
ticated numerical algorithms is not really necessary, because these problems can usually
be solved with high precision in a reasonable amount of time with numerous procedures.
Nevertheless, such (numerically) simple problems are important for verifying the accuracy
of numerical procedures. Our first example will illustrate this, because for this problem the
exact solution is known, hence the accuracy of the respective methods can be compared
directly. For the subsequent examples the exact solution is not known, hence numerical
methods are necessary for their analysis.

3.1 The basic growth model

We start our numerical investigations with a basic growth model in discrete time, which
goes back to Brock and Mirman (1972) and has triggered extensive research in the RBC
literature. This model has also been used as a test example for many numerical algorithms,
see, e.g., Santos and Vigo-Aguiar (1995, 1998, Sect. 4) and Grüne and Semmler (2004).
The problem is a discrete time maximization problem of type (2.3)–(2.4) with the payoff
function and dynamics given by

g(x, u) = ln(Axα − u) and x(t+ 1) = u(t),

7



with constants A > 0 and 0 < α < 1. The exact solution to this problem is known (see
Santos and Vigo-Aguiar (1998)) and is given by

V (x) = B + C lnx, with C =
α

1− αβ
and B =

ln((1− αβ)A) + βα
1−βα ln(αβA)

1− β
.

The unique optimal equilibrium for this example is given by x? = 1/ α−1
√
βαA and as

we specify parameters A = 5, α = 0.34 and β = 0.95 for our numerical tests, we have
x? ≈ 2.067.
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Figure 3.1: Closed loop trajectory (solid) and open loop trajectories (dashed) for the growth
model forN = 5 and x0 = 5 (left) and V (x0)−J∞(x0, µN ) for x0 = 5, N = 2, . . . , 15 (right),
with µN the NMPC controller for time horizon N .

We expect that the NMPC algorithm computes closed loop solutions such that the system
is steered into a neighborhood of the optimal equilibrium, and this is indeed the observed
behavior in Figure 3.1 (left; the closed loop solution is depicted as solid line with circles).
Moreover, we see that the open loop trajectories (shown as dashed lines) converge into a
neighborhood of x?, stay there for some time instants and finally turn away. Numerical
tests show, that the time period the open loop trajectories stay nearby the equilibrium
increases as we enlarge the optimization horizon N . This phenomenon, often referred to as
turnpike property, can be observed for several types of optimal control problems (see also
Figure 6.12)) and is an essential ingredient in order to prove convergence of the closed loop
trajectory for averaged optimal control problems Damm et al. (2012).

The second interesting aspect to look at is whether the NMPC closed loop trajectory
maximizes the given objective function. In Figure 3.1 (right) we compare the exact optimal
value V (x0) to the return generated by the NMPC algorithm with different N for initial
value x(0) = x0 = 5, i.e. we compute

V (x0)− J∞(x0, µN ), J∞(x0, µN ) :=
∞∑
t=0

βtg(x(t), µN (x(t))),

where µN denotes the NMPC controller for horizon N . Figure 3.1 shows, that the dif-
ference V (x0) − J∞(x0, µN ) converges to zero exponentially fast for N → ∞ and hence,
for increasing N , the NMPC generated return J∞(x0, µN ) approximates the optimal value
V (x0) arbitrarily well.
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3.2 The basic DSGE model

Next we describe an extension of the basic growth model of section 3.1, where we now
introduce also a labor choice in the preferences, as is commonly done in DSGE models. As
to the formulation of preferences we follow Aruoba et al. (2006) and Parra-Alvarez (2012)
but we do not pursue the strategy of linearization about the steady state.12 We consider
the non-stochastic variant of it which has one state variable and two control variables, and
attempt to find global solutions.

The model, in continuous time form, looks as follows

g(x, u) =
(u1(t)(1− u2(t))ϕ)(1−γ)

1− γ

with dynamics

d

dt
x(t) = (r(t)− δ)x(t) + w(t)u2(t)− u1(t) .

with u1 consumption, u2 labor effort, x as capital stock, r(t) = αAx(t)1−αu2(t)1−α the
return on capital, w(t) = (1 − α)Ax(t)αu2(t)−α the wage rate, derived from a production
function such as Ax(t)αu2(t)1−α.

The following are standard parameters for this kind of model, see Aruoba et al. (2006) and
Parra-Alvarez (2012). We set A = 1, α = 0.4, δ = 0.0196, σ = 1.8011. The discount rate
for the dynamic decision problem is taken as ρ = 0.0105. The steady state values are13

x∗ = 23.03, u(1)∗ = 1.2865, u(2)∗ = 0.3104.

In Figure 3.2 the closed loop solution and open loop solution are shown, using the NMPC
algorithm, in both cases the steady state of the capital stock, x∗ = 23.03, is used as terminal
condition.

The above example of Section 3.1 is in fact computed without terminal condition. Also the
next examples are computed without terminal conditions. In any case, if avoidable, one
should not use linearization techniques about some known steady states, but rather find
global solutions, in particular if some interesting dynamics further away from the steady
state. This is even more important if there are multiple domains of attraction, as our next
example shows.

12The numerical solution techniques as they are implemented by DYNARE use mostly local techniques
where an approximation is taken around the deterministic steady state. DYNARE can also solve dynamic
decision models globally by using the deterministic steady state as terminal condition. Recently, algorithms
based on the perturbation method have been developed. These algorithms build on a Taylor series expansion
of the agents’ policy functions around the steady state of the economy and a perturbation parameter. In
earlier literature one has used the first term of this series. Since the policy functions resulting from a first
order approximation are linear and many dynamic models display behavior that is close to a linear law
of motion, the approach became quite popular under the name of linearization. Judd and Guu (1997)
extended the method to compute the higher-order terms of the expansion, see also Collard and Juillard
(2001).

13For details see Parra-Alvarez (2012)
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4 Two dimensional examples

Subsequently, we describe three two–dimensional problems which we have solved using our
algorithm. We first study our above basic growth model of Sect. 3.1, but we employ an
extension to a two dimensional stochastic variant by which means we illustrate the capability
of NMPC for solving stochastic problems.

We then turn to deterministic problems, where the study of the dynamics of two–dimensional
problems with multiple domains of attractions have been quite a challenge for research in
economics, since here one expects the separation of domains of attraction given not by
threshold points but threshold lines (Skiba lines). Furthermore, a two–dimensional model
is added with two control variables where it is interesting to track the finite time path of
the solution trajectories.

4.1 A 2d stochastic growth model

Our first 2d problem is a 2d version of the Brock and Mirman (1972) model of Example
3.1. Here the 1d model from Example 3.1 is extended using a second variable modelling a
stochastic shock. The model is given by the discrete time equations

x1(k + 1) = x2(k)Ax1(k)α − u(k)
x2(k + 1) = exp(ρ lnx2(k) + zk)

where A,α and ρ are real constants and the zk are i.i.d. random variables with zero mean.
The payoff function in (2.3) is again g(x, u) = lnu.

In our numerical computations we used the parameter values A = 5, α = 0.34, ρ = 0.9
and β = 0.95 and zk are i.i.d. Gaussian random variables with zero mean and variance
σ2 = 0.0082. Using that E(exp(a+ zk)) = exp(a+σ2/2), the model used for the open loop
optimization is given by

xe1(k + 1) = E(xe2(k)Axe1(k)α − u(k)) = xe2(k)Axe1(k)α − u(k)
xe2(k + 1) = E(exp(ρ lnxe2(k) + zk)) = exp(ρ lnxe2(k) + σ2/2).
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Following the computations in Santos and Vigo-Aguiar (1995) the optimally controlled
dynamics is given by x1(k+1) = αβAx2(k)x1(k)α. From this equation and the equation for
x2(k+1), above, one can derive equations for the steady state values of E(lnx1) and E(lnx2)
which transformed to the original exponential variables yield the expected equilibria xe,∗2 =

exp(σ2/(2(1− ρ2)) ≈ 1.000168 and xe,∗1 = (αβA)
1

1−α (xe,∗2 )
1

1−α2 ≈ 2.067739.

Figure 4.3 (left) shows the two components of a typical closed loop trajectory (solid) starting
in x0 = (2, 1)T , along with the optimal open loop trajectories in each iteration (dashed).
In order to measure the quality of the closed loop solutions, we have measured the average
distance of the first component of the closed loop trajectory from the expected equilibrium.
For each of these measurements an approximation Ẽ(x1(k)) of this average was computed
by a Monte-Carlo simulation using two trajectories starting in the optimal equilibrium
xe,∗ with length 1000 and antithetic random numbers. Figure 4.3 (right) shows that the
results improve with growing optimization horizon N until about N = 8, after which the
errors caused by the Monte-Carlo simulation and the certainty equivalence approach become
visible. Despite these errors, the simulations demonstrate that the NMPC approach is very
well suited to compute approximately optimal trajectories also for stochastic problems with
a reasonably small error.
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Figure 4.3: Closed loop trajectory (solid) and open loop trajectories (dashed) for the growth
model for N = 5 and x0 = (2, 1)T (left) and equilibrium deviation |Ẽ(x1(t)) − xe,∗1 | for
x0 = xe,∗, N = 3, . . . , 15 (right), with µN the NMPC controller for time horizon N .

4.2 A 2d model with multiple domains of attraction

The following problem from Haunschmied et al. (2003) is a 2d variant of an investment
problem of the firm where the control variable is the change of investment rather than
investment itself as in the usual case. The payoff function is here given by

g(x, u) = k1
√
x1 −

x1

1 + k2x4
1

− c1x2 −
c2x

2
2

2
− αu2

2

with the dynamics
d

dt

(
x1(t)
x2(t)

)
=
(
x2(t)− σx1(t)
u(t)

)
.
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The following parameters are used: σ = 0.25, k1 = 2, k2 = 0.0117, c1 = 0.75, c2 = 2.5,
α = 12 and discount rate δ = 0.04. Generating the vector field we have obtained the results
shown in the following Figure 4.4.14

Figure 4.4: Vector field of the model with multiple attractors

The vector field shows clearly two domains of attraction, one at roughly x∗1 = 0.5, x∗2 = 0.2
and the other roughly at x∗1 = 4.2, x∗2 = 1.1. The vector field shows that there is a
bifurcation of the dynamics, where the trajectories go either to the low level steady state or
high level steady states. This bifurcation line has been called a Skiba curve. Note, however,
that the above vector field is generated by DP15 and assumes an infinite decision horizon.

Next, we want to see if we can replicate the two domains of attraction for a finite decision
horizon by using NMPC. Therefore, we choose different initial values from both domains
of attraction and run the NMPC algorithm for different horizons N . Figure 4.5 shows the
resulting phase plots for selected N . We observe that for small N , e.g. N = 10, all NMPC
trajectories converge to the left equilibrium. If we increase N , e.g. N = 35, the trajectories
of some of the initial values converge to the second equilibrium. For N = 50, as in Figure
4.4, we observe the existence of a Skiba curve, i.e. trajectories resulting from initial values
right (left) of the curve converge to the equilibrium on the right (left).

Note that if agents have different decision horizons, this might actually give rise to different
long run steady states. So, if one views the above model as a data generating mecha-
nism, data would be generated on different time scales, as wavelet approaches suggest, see
Gallegati et al. (2011).

4.3 A 2d growth model with non-renewable resources

As a last example of this section we consider a growth model with the extraction of a non-
renewable resource as discussed in Greiner and Semmler (2008, Ch. 14). The model is as
follows:

g(x, u) = U(u1)

14Figure 4.4 was generated through DP, with time step h = 1/20 and 101 control values eU covering
U = [−1, 1]. For the details of solving the model through DP and generating the vector field, see Grüne
and Semmler (2004).

15See Grüne and Semmler (2004)
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Figure 4.5: Phase plots of NMPC trajectories of the model of multiple domains of attraction
for N = 10 (upper left), N = 35 (upper right) and N = 50 (lower)

d

dt

(
x1(t)
x2(t)

)
=
(
F (x1(t), u2(t))− u1(t)− σx1(t)
−u2(t)

)

x2(t) ≤ x2(0)

The model captures the extraction of the non-renewable resource needed for production. It
posits that there is utility from consumption, U(u1)=(u1(t)1−σ)/(1 − σ). The production
function includes extracted exhaustible resources F (x1(t), u2(t)) = x1(t)βu2(t)1−β. Here
x1 and x2 are the capital stock and the stock of resources, where the stock of extracted
resources is constrained by x2(t) ≤ x2(0) with x2(0) the initial stock of the exhaustible
resource. The control variables u1 and u2 are consumption and the extracted resource per
unit of time.

We set the parameters to ρ = 0.03, σ = 0.5, β = 0.7, and δ = 0.05. Figure 4.6 shows how
the dynamics of the optimally growth model with the non renewable resource behave.

Initially the non-renewable resource is assumed to be x2(0) = 10, and x1(0) = 1. As one
can observe the path for the non-renewable resource declines to zero, using an optimal
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Figure 4.6: Growth model with non-renewable resource, closed loop solid, open loop dashed,
initial value x(0) = (1, 10)T

extraction strategy, and the capital stock first builds up and then, since the non-renewable
resources becomes exhausted, also declines to zero. The results reported here are consistent
with the literature starting with Hotelling.16 The results in the literature typically replicate
Hotelling‘s presumption, namely that the resource is optimally extracted until there is no
more resource in situ. Our NMPC algorithm lets us conveniently study the paths of the
resource and capital stock in a model with decisions on a finite time horizon. This will
prove to be a useful procedure to study the case when we introduce a backstop technology
as is done next.

5 Three dimensional examples

Next we are discussing three dimensional models that have three state variables and two
and three decision variables respectively. We start with a model of two decision variables.

5.1 Growth with non-renewable resources and backstop technology

We want to extend the model of Section 4.3 by considering the time paths of the state
and decision variables when externalities arise in the context of a growth model with non-
renewable resources (such as fossil fuel, with CO2 emission) are used. We will allow, how-
ever, a backstop technology that might be phased in.17 The issue here is then whether

16Yet, in Hotelling there is no capital stock and consumption included in the resource extraction model.
17This type of model originates in the work of Heal. For a recent review of the concept of backstop

technology, see for example Heal (2009). For further literature references and modeling details, see Greiner
et al. (2012).
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the non-renewable resource is completely exhausted, as in the case of Sect. 4.3, or whether
some is left in situ when the backstop technology is phased in.

In the subsequent model, which is based on the above literature, there are two control
variables and three state variables. The preferences include a utility from consumption, u1,
affected multiplicatively by the cumulative CO2 emission, x3, arising from the use of non-
renewable energy such as fossil fuel. Preferences are written as:

U =
u1−σ

1 (x3 − xo)−ξ(1−σ) − 1
1− σ

(5.12)

Here again, the parameter 1/σ > 0 denotes the inter-temporal elasticity of substitution of
consumption between two points in time and ξ > 0 gives the (dis)utility of the greenhouse
gas concentration, exceeding the pre-industrial level, xo, affecting negatively consumption.
For σ = 1 the utility function is logarithmic in consumption and pollution.

The dynamics of the three state variables, capital stock, stock of non-renewable resource
and stock of CO2, x1, x2, and x3 are as follows:

ẋ1(t) = Y (t)− u1(t)− δx1(t)− a · u2(t) (5.13)
ẋ2(t) = −u2(t) (5.14)
ẋ3(t) = β1u2(t)− µ(x3(t)− κxo) (5.15)
x2(0) = x0, x1(0) = x0, x3(0) = x0

We have u2(t) as the extracted amount of non-renewable energy (fossil fuels) used at time t
to generate energy and x1 a stock of capital that produces energy using renewable sources
of energy (backstop technology, such as wind or solar energy). Note that production of the
final good Y (t) uses energy and is a concave function of energy input,18

Y = AEα = A (Anx1 +Apu2)α (5.16)

and Ai, i = p, n, denote efficiency indices. Total energy E consists of the sum of these two
types of energy, non-renewable and renewable,with 0 < α ≤ 1, A > 0. Note that energy is
a homogeneous good so that modeling the two types as perfect substitutes can be justified.

In the numerical analysis below we set µ = 0.1 and β1 = 0.5 which are plausible values
and κ = 2, M(0) = Mo with Mo = 1. Furthermore, the other parameters are ρ = 0.05,
δ = 0.05, σ = 1, α = 0.5, Ap = 1, An = 1, a = 0.1, and ξ = 0.5.

Figure 5.7 shows the NMPC results for different initial conditions of the non-renewal re-
source, x2(0) = 0.5, x2(0) = 2.5. In both cases a high initial capital x1(0) = 3 exists and
also in both cases we assume x3(0) = 1.

18In the following we delete the time argument t as long as no ambiguity arises.
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Figure 5.7: NMPC closed loop solutions for x2(0) = 0.5, and x2(0) = 2.5, and in both cases
x1(0) = 3, x3(0) = 1

In Figure 5.7, for both the low x2(0) = 0.5 and high x2(0) = 2.5, there is non-renewable
energy unextracted if the initial capital stock is high and thus sufficient renewable energy
produced right away. As our simulations have shown19, for both, x2(0) = 0.5, and x2(0) =
2.5, the cumulative CO2 is lower when the renewable energy, the backstop technology, is
phased in faster, i.e. when the capital stock is high. We also can observe that for both
initial conditions of the non-renewable resource, some of the non-renewable resource is left
unextracted. Yet, for the second case, for x2(0) = 0.5, the cumulative CO2 is lower.

Thus, in contrast to what the Hotelling theorem seems to imply20, with backstop technology
available, not all the resource will be extracted, non-renewable energy resource will be left
in situ, a quicker phasing in of renewable energy will take place, and, as compared to the
complete extraction of the resource, less CO2 is emitted. If the available non-renewable
energy resource is high, the extraction rate of the non-renewable resource is initially high,
this will keep the CO2 emission high, and we end up with a high concentration of CO2

sooner.21 So, NMPC, by tracking the solution paths, helps to provide us with useful
information on the fate of the state variables.

19For details, see Greiner et al. (2012).
20The conjecture that the Hotelling model of the optimal use of a non-renewable resource, where only

one energy source is available, will lead to a faster depletion, to a faster build up of CO2 emission and
faster global warming, depends of course on the set-up of the Hotelling model and how prices and costs are
modeled. For results on this conjecture in a Hotelling model using firms’ payoffs, see Maurer and Semmler
(2010) and for a model with preferences see section 4.3.

21Note that also in Figure 5.7, with high initial non-renewable energy, more fossil energy source is left
unextracted, but in this case the cumulative CO2 rises faster.
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5.2 A model with credit market frictions

The next example is a model with credit market frictions. Numerous model variants along
this line of research have been proposed. Here, regime changes can occur in such models
when suddenly, due to overborrowing, credit constraints or a jump in credit spreads arise.22

A basic model with credit market frictions can be described as follows. There are three
state variables, employment, x1, capital, x2, and debt, x3. The model includes search and
matching frictions in the labor market and in the credit market, with preferences over
consumption and leisure given by:

U =
u1−η

1

1− η
− exχ1

ẋ1(t) = mL(su(t), u2(t))− σx1(t) (5.17)
ẋ2(t) = mB(u3(t), B(t))− δx2(t) (5.18)

ẋ3(t) = rx3(t)− υ[Y (x1(t), x2(t))− F (t)− Φ (s) (1− x1(t))− ζu2(t)− κB(t)] (5.19)

with u1, aggregate consumption, Y , aggregate production, generated from a Cobb-Douglas
production function Y (x1(t), x2(t)) = x2(t)0.36Ax1(t)0.64, A, (exogenous) labor productiv-
ity, F (t), financial funds, B(t) = F (t) − u1(t), offered bonds for firms, x3, the stock of
external debt, u = (1 − x1), the unemployment rate, u2, the job vacancies posted, r, the
interest rate, and x1, employment. In addition to costly search on the labor market, ζu2(t),
there is floating cost for bonds, with per-period bond cost floating, κB(t).

In equs. (5.17) and (5.18) the function mL(u(t), u2(t)) = (su(t))0.5u3(t)0.5 denotes the
search and matching function on the labor market, with s the search intensity of the un-
employed, and mB(u3(t), B(t)) = u3(t)0.5B(t)0.5 is a similar function for the credit market.
Both are Cobb-Douglas, with exponents 0.5 and 0.5 and σ, the separation rate, and δ, the
depreciation rate of capital. In equ. (5.19), x3 denotes external debt, the term [.] is external
borrowing, used for excess spending over domestic income for example by households and
firms.23 The debt dynamics (5.18) is written here in a way which is standard if one allows
for external borrowing with no credit constraints, see Blanchard and Fischer (1989, Ch. 2).
What is only added here are the search and matching frictions on the labor and credit
markets.

Note that we assume F (t) = µu1(t), with µ > 0, so that there is excess of funding over
consumption – as long as the latter is optimal – which will be available for domestic invest-
ment. This assumption is made in order to avoid a fourth decision variable. Yet, investment
funding will be evaluated on the credit market by a search and matching process for bonds
of firms. Investment is expressed as intended bond issuing, B(t), but it faces a search and
matching process on the credit market, where the supply of funds for bonds is given by

22For studies on a sudden rise of credit spreads, see Gilchrist and Zakrajek (2011) and Roch and Uhlig
(2012) and the literature referenced there. Both cases, credit constraints and credit spreads are treated in
Ernst and Semmler (2012).

23Sovereign debt could be included here as well.
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Figure 5.8: Dynamics of a model with no credit constraints, constant interest rate

F − u1. It also means that the screening and monitoring of investment funding takes place
more extensively than funding for (optimal) consumption.

The parameters for the NMPC solutions are: µ = 1.3 and β = 0.35, κ = 0.1, ρ = r = 0.03,
δ = 0.03, σ = 0.04, α = 0.36, A = 1, ξ = 0.07, χ = 5, e = 1. The parameter υ is set to one
in the no-credit constrained regime.

Figure 5.8 shows the results for the basic model. The horizontal axis represents capital stock
and the vertical the leveraging ratio, the debt to capital stock. The solution is obtained by
NMPC with horizon N = 6. Figure 5.8 shows that there is clearly a steady state at about
x∗2 = 4.65 and (x3/x2)∗ =1.95. The steady state is unique and all initial conditions for the
state variables would converge toward that point.

So far the basic model implies no further credit restrictions. Yet, the credit market could
be shut down and no further credit obtained externally if some debt capacity is reached.
We could thus have a regime switch such that the term [.] in equ (5.19) becomes zero.
This gives rise to a regime change from a smoothly working credit market to a credit
constrained capital market,24 as often formulated in the literature on credit constrained
regimes, occurring when the debt constraint holds:

x3(t) ≤ γx1(t) (5.20)

where γ is the (exogenously given) debt capacity. When equality starts to hold in (5.20),
we have 0 = υ[Y (x2, Ax1) − F − Φ (s) (1− x1) − ζu2 − κB] with υ = 0 and the economy

24Regime switching models in the DSGE literature can be found with respect to regime switches in policy
reaction function, technology processes and in nominal rigidities, see Eo (2009) whose work is based on Sims
(2002). There, however, it is assumed that the Euler equation, based on an infinite horizon solution, holds.
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Figure 5.9: Dynamics with regime switches in the credit market

experiences a credit constrained regime,25 (with likely severe financial stress).26

The regime change dynamics, triggered through the credit constraint, can also be explored
by our NMPC procedure.27 Note that consumption continues to be chosen optimally
whereby the remainder of output minus consumption (adjusted for the search cost for jobs,
and bond issuing) goes into investment. Investment will now be constrained if external
funding and credit flows are terminated. The results are shown in Figure 5.9.

Figure 5.9, with the switch to a credit constrained regime, shows that the capital stock as
well as debt to capital ratio first go up, then debt rises and finally the capital stock shrinks
after the regime switch.

In contrast to the above regime switch, alternatively, as other literature assumes,28 there
could be a higher default premia and credit spread triggered for the borrowers giving rise
to the following model variant. In the debt dynamics

ẋ3 = r(x3(t)/x2(t))x2(t)− υ[Yt (x2(t), x1(t))− F (t)− Φ (s) (1− x1(t))− ζu2(t)− κB(t)]
(5.21)

25Earlier growth literature has referred to such a case in an open economy growth model, see Barro et al.
(1995). Of course, some probability of regime switching could be introduced, as in Eo (2009).

26In the numerics the regime switch is achieved by first setting parameters before the appropriate terms
equal to 1 and then when the constraints set in they are set to 0.

27Note that the discontinuities induced into the model by the regime switch may in principle cause
problems both in the underlying optimization algorithm as well as in the ODE solver used in the numerical
procedure. However, for the parameters used in our simulations no such difficulties were observed, probably
because the solutions always cross the regime switching surface transversally.

28See Gilchrist and Zakrajek (2011) and Roch and Uhlig (2012)
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the credit spread is now made dependent on the leverage ratio29, but we have again υ = 1.

This formulation is similar to Roch and Uhlig (2012) who have, however, an on-off scenario:
With a high probability of default bond prices are low and yields are high, and the reverse
holds for a low probability of default. If one wants to smooth out the on-off cases, as the
only two scenarios, we can perceive a continuum of cases where the probability of default
may steadily rise starting from a low level, then rising faster, and then leveling off, where
no bonds can be issued any more. One can thus make the bond price and thus the yield, a
nonlinear function of leveraging.30

In parallel to Roch and Uhlig (2012) we make the credit spread an arctan function of the
leverage, so that the credit spread becomes:

r(x3/x2) = βarctan(x3/x2). (5.22)

which in turn is likely to give rise to a shrinking consumption and investment demand,
reducing output and the surplus, to service the debt.31

Figure 5.10 provides the NMPC results when credit spread follows the nonlinear function
(22). As can be observed from Figure 5.10, as compared to Figure 5.9, the change to
a high credit spread economy, possibly triggering a stage of high financial stress and an
economic contraction,32 occurs less abruptly than in Figure 5.9 where there is a sudden
regime switch when the maximum borrowing capacity is reached. Yet, in Figure 5.10 we

29For further details, Ernst and Semmler (2012) and also Gilchrist and Zakrajek (2011).
30Gilchrist and Zakrajek (2011) have added a persistent shock to the leverage ratio to obtain higher bond

yields and thus greater credit spreads.
31For a mechanism explaining the further downward spiral, see Ernst and Semmler (2012).
32How a self-enforcing mechanism, a vicious cycle, might set in is also discussed in Roch and Uhlig (2012).
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can also observe the contractionary effect after the regime change to higher default premia
and greater spreads.

6 Some Implementational Aspects

In the previous sections various examples of finite horizon optimal control problems and
their numerical results have been presented. All simulations were either computed by a
MATLAB routine33 (for less demanding examples) or by a C++ software package34 (for
more complicated examples).

The main part of implementing the NMPC algorithm consists of solving the optimization
problem in step (2) of the NMPC algorithm. This is accomplished by transforming the
given optimization problem into standard form

min
z∈Rnz

f(z)

s.t. G(z) = 0 and H(z) ≤ 0.
(6.23)

To this end, we need to decide which variables should be chosen as optimization variables
z. In Grüne and Pannek (2011, Chapter 10), three different approaches to that problem
(also referred to as discretization) are proposed35:

1) In full discretization not only the control values uk,i, k = 0, . . . , N − 1, but also the
states xk,i, k = 0, . . . , N, are considered as optimization variables. The inclusion of
the states requires additional equality constraints which ensure that the trajectory
satisfies the system dynamics. This leads to the following definitions in (6.23):

z := (uT0,i, . . . , u
T
N−1,i, x

T
0,i, . . . , x

T
N,i)

T , f(z) := −
N−1∑
k=0

βkg(xk,i, uk,i),

G(z) :=


∗1

x0,i − x0

x1,i − ϕ(x0,i, u0,i)
...

xN,i − ϕ(xN−1,i, uN−1,i)

 , H(z) := (∗2),

where ∗1 and ∗2 denote possible pre-existing constraints.

2) Recursive discretization describes the approach to decouple the system dynamics from
the optimization problem, i.e. only the control values uk,i are optimization variables
whereas the system dynamics are computed outside the optimization. Since the op-
timizer requires information about the system and vice versa, both components need
to communicate: The optimizer sends the initial value and the control values to the
system dynamics which in turn sends the corresponding states that are needed in
order to evaluate the objective function f(z). Figure 6.11 shows the exchange of
information schematically.

33available at www.nmpc-book.com
34see www.nonlinearmpc.com
35For the sake of comprehensibility we only consider systems in discrete time. In case of continuous
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NLP (6.23) Dynamics

uk,i, x0

f(z)← xk,i

Figure 6.11: Exchange of information between the optimization prob-
lem and the system dynamics

Consequently, in (6.23) after recursive discretization we have

z := (uT0,i, . . . , u
T
N−1,i)

T , f(z) := −
N−1∑
k=0

βkg(xk,i, uk,i),

G(z) := (∗1), H(z) := (∗2),

with ∗1 and ∗2 as above.

3) The third technique — called shooting discretization — includes some of the states
xk,i as optimization variables, but in contrast to full discretization just for some of
the k ∈ {0, . . . , N − 1} and possibly not for all components. Certainly, all uk,i are
chosen as optimization variables as well. As in full discretization we need to impose
additional equality constraints for the states which are optimization variables.

Obviously, a main disadvantage of technique 1) is the high dimensionality of the resulting
optimization problem. At the same time, the optimizer is given the full information about
the dynamics which is an advantage for iterative solvers, e.g., for obtaining good initial
guesses. Moreover, the special structure of the resulting fully discretized optimization
problem can be used in order to simplify the problem to be solved (using a technique called
condensing, see Grüne and Pannek (2011, Sec. 10.4).

In recursive discretization, the optimization problem has minimal dimension but informa-
tion about the trajectories can hardly be used within the optimization. In addition, the
external computation of the trajectories may lead to numerical instability due to the sen-
sitive dependence of the values xk,i on the control values uk,i: Even a small deviation of
one of the uk,i may result in a large deviation of the trajectory and hence of the objective
function.

Shooting discretization can be seen as an attempt to reduce the dimension of the fully
discretized problem as much as possible without losing stability and useful information
about the trajectories. For a detailed discussion on the three techniques see Grüne and
Pannek (2011, Sec. 10.1). Regarding the software we used for the examples in this paper,
the MATLAB routine we have used is based upon recursive discretization and uses the
fmincon optimization routine for solving (6.23) while the C++ software is able to perform

systems, we replace the system dynamics by a numerical approximation, cf. (2.6).
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each of the discretization techniques and has links to various optimization packages which
can be selected for solving (6.23).

Now that we have defined the optimization problem, we might expect difficulties whenever
(6.23) is nonlinear and nonconvex. In this case, the optimization algorithm may only find a
local optimum which does not need to be a global optimum or the optimizer may not able
to find an optimum, at all. While such difficulties did not occur in the examples in this
paper, when interpreting the outcome of an NMPC algorithm one should always be aware
that they may happen. Often, one can avoid such situations e.g. by adding constraints or
chosing the initial guess of the optimizer carefully.

The optimization horizon N plays an important role in NMPC. As pointed out in Section 2,
an approximation of the infinite horizon optimal trajectories can only be expected if N is
sufficiently large. In Section 4.2 we already illustrated the effect of varying N in the
presence of multiple optimal equilibria. Recall that in this example we needed to increase
N to about 50 in order to obtain the correct domains of attraction. In order to explain
why this happens and also in order to illustrate the turnpike property as the mechanism
for the approximation property of NMPC (cf. the discussions in Sections 2.1 and 3.1), we
reconsider the example from this section. In Figure 6.12 we show the optimal open loop
trajectories starting in x0 = (3, 0.75)T for different N .
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Figure 6.12: Open loop trajectories for the model from Section 4.2 for x0 = (3, 0.75)T and
various N ≤ 45 (dashed) and N ≥ 50 (solid).

This figure shows that the open loop trajectories are attracted by the lower left equilibrium
for small N and by the upper right equilibrium for larger N , i.e., for too small N the
optimizer does not “see” the proper optimal equilibrium. Moreover, we can observe the
turnpike property for N ≥ 50: the larger N , the closer the trajectories approach the

23



optimal equilibrium (indicated by the “+” in the upper right corner of the figure) and the
longer they stay in its neighborhood.

While it seems that increasing N is often a good strategy in order to obtain a good approx-
imation of the infinite horizon optimal solutions, we want to point out that large horizons
increase the dimensionality in (6.23) on the one hand and, on the other hand, may cause
numerical problems (as shown in Grüne and Pannek (2011) for the inverted pendulum).
Hence, there is a tradeoff between good approximation, numerical effort and numerical ac-
curacy which implies that a judicious choice of N can only be found if all these effects are
taken into account.

Summarizing, being aware of possible pitfalls, users of NMPC software should always in-
terpret the obtained results carefully and consider a series of numerical experiments with
different parameters in order to verify the validity of their results.

7 Conclusion

In this paper we have demonstrated that NMPC provides an efficient way of numerically
solving dynamic decision problems in economics. Since the NMPC method allows one to
compute finite horizon dynamic decision problems, with solutions approximating the corre-
sponding infinite horizon models, it is well suited to track the solution paths for information
constrained agents in the sense of Sims (2005, 2006). Our examples show that this method
can address deterministic and stochastic model variants with good accuracy as well as
models with multiple domains of attraction and thresholds. The NMPC also permits us
to compute state and control variables for models where state variables are phased in or
phased out. As we have shown, we can also numerically solve models with regime shifts
in the dynamics. We can compute discrete and continuous time models where the steady
states, as terminal conditions, and linearization about them, are not needed to compute
the solutions numerically. So far algorithms and software are available that operate in both
MATLAB as well as in C++. As compared to Dynamic Programming the NMPC approach,
by avoiding to grid the state space, has significant advantages as it is less prone to the curse
of dimensionality.
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