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On the Benefit of Re-optimization in Optimal Control
under Perturbations*

Lars Grüne1 and Vryan Gil Palma1

Abstract— We consider a finite-horizon optimal control prob-
lem for a system subject to perturbations. We compare the
performance of the nominal optimal control sequence under
perturbations with a shrinking horizon strategy in which a
re-optimization for the nominal model is performed in each
sampling instant using the current perturbed system state
as new initial value. We analyze the potential performance
improvement using suitable moduli of continuity as well as sta-
bility and controllability properties and illustrate our findings
by numerical simulations.

I. INTRODUCTION

Receding horizon control (RHC), also known as model
predictive control (MPC) is a control strategy based on the
solution, at each sampling instant, of an optimal control
problem (OCP) over a chosen horizon. In this optimization-
based control technique, an OCP is solved at every sampling
instant to determine a sequence of input moves that controls
the current and future behavior of a physical system in an op-
timal manner. Typically for an RHC scheme, after applying
the first element of the optimal sequence of input moves,
the fixed optimization horizon is shifted by one sampling
time into the future and the procedure is repeated, i.e., a
re-optimization is performed. In this work, we consider the
particular case of an RHC scheme, in which the prediction
horizon is decreased by one sampling interval in each re-
optimization.

This type of RHC scheme is typically applied to batch
processes which are widely seen in various sectors of chem-
ical and manufacturing industries including food products,
pharmaceuticals, chemicals products, semiconductors, etc
[9]. Batch processes typically refer to the processing of
specific quantities of raw materials for a finite duration of
time, called a cycle, to form or produce a finite quantity of
end product. At the end of a cycle, initial process conditions
are reset to run another cycle [7]. Due to the fixed final
batch time, the optimal control problem to be solved by
RHC is defined on a finite horizon and consequently the
prediction horizon of the RHC implementation ’shrinks’ by
one sampling interval in each iteration [9]. This has led to
the term ’shrinking horizon MPC’ [6] with early applications
seen in [4], [6], [14].

As a consequence of the dynamic programming principle,
in the absence of model uncertainties and disturbances the
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optimal trajectory resulting from the re-optimization with a
shrunken horizon coincides with the tail of the optimal tra-
jectory obtained in the previous iteration. Hence, we can only
expect a benefit from re-optimization if a perturbation acts
on the system. Conceptually, the idea of shrinking horizon
MPC has strong similarities to sensitivity-based techniques
in order to cope with perturbations [2], [8], [11], in which
instead of a full re-optimization only an approximate update
of the optimal control based on updated state information is
performed. This idea can also be used in moving horizon
MPC in order to reduce the number of full optimizations
in the context of the so-called real-time optimization [3]
or multistep feedbacks laws [10]. While in this paper we
only consider the shrinking horizon setting with full re-
optimization, we expect that the results can be extended to
sensitivity updates and moving horizon multistep MPC.

Despite the long history of the method, we are not aware
of rigorous results which quantify the benefit of the re-
optimization in terms of the objective of the optimal control
problem in the presence of persisting perturbations. While
many papers address feasibility issues — which is an impor-
tant and serious problem in its own right — results on the
performance of the controller and its potential improvement
due to re-optimization are to the best of our knowledge
missing up to now. This is the gap we intend to close
with this paper. More precisely, we compare three different
settings: the open-loop controller for the nominal system,
the nominal open-loop controller applied to the perturbed
system and shrinking horizon RHC, i.e., the controller for
which at each time step wherein perturbation is experienced,
we perform re-optimization. Our analysis reveals that the
potential improvements of re-optimization depend on the
moduli of continuity of the optimization objective on the
one hand and of the optimal value function on the other
hand. For the special case of linear quadratic problems
we moreover show how these moduli depend on stability
and controllability properties of the system and confirm our
theoretical findings by numerical simulations.

The paper is organized as follows. In Section II, we define
our setting and give basic tools needed for our analysis
such as the dynamic programming principle and uniform
continuity of functions. In Section III, we define systems
with perturbations and introduce a notation that enables us
to keep track of the number of experienced perturbations
and performed re-optimizations along a state trajectory. In
Section IV and V, we conduct an analysis on the benefits
from re-optimization under perturbations by comparing the
three settings described above and discussing concepts of



controllability and stability. In Section VI we illustrate our
theoretical findings by numerical examples and finally, we
give an outlook and conclusion in Section VII.

II. PRELIMINARIES

Consider the nonlinear discrete time control system

x(k + 1) = f(x(k), u(k)) (1)

where x is the state and u is the control value. Let the vector
spaces X and U be state and control spaces, respectively.
For a given state constraint set X and control constraint set
U we require x ∈ X ⊆ X and u ∈ U(x) ⊆ U . The notation
xu(·, x0) (or briefly xu(·)) denotes the state trajectory when
the initial state x0 is driven by control sequence u(·).

We consider the minimization problem

min
u(·)∈UN (x0)

JN (x0, u(·)) PN (x0)

for an objective function JN (x0, u(·)) representing a cost
associated with an initial state x0 at reference time 0, a
control sequence u(·) and optimization horizon N . The
objective function is given by

JN (x0, u(·)) :=
N−1∑
k=0

` (xu(k, x0), u(k))

and the minimization is performed over all control sequences
u(·) ∈ UN (x0) with

UN (x0) :=

u(·) ∈ UN

∣∣∣∣∣∣
xu(k + 1, x0) ∈ X and
u(k) ∈ U(xu(k, x0))
for all k = 0, . . . , N − 1

 .

The said problem is parametric with respect to the initial
value x0 and for this reason we denote it by PN (x0).
Sometimes we also use the notation PN (x0, k0) in order
to emphasize that x0 is the initial state at initial time k0.

We define the optimal value function by

VN (x0) := inf
u(·)∈UN (x0)

JN (x0, u(·))

and the control sequence u∗(·) ∈ UN (x0) for which
VN (x0) = JN (x0, u

∗(·)) is called the optimal control
sequence. We note that the optimal control sequence u∗(·)
may not exist or may be non-unique.

One important concept that we will be using in our
analysis is the dynamic programming principle which relates
the optimal value functions of OCPs of different optimization
horizon length for different points along a state trajectory [5],
[1].

Theorem 1: (Dynamic programming principle) Let x0 be
an initial state value. Let u∗(0), u∗(1), . . . , u∗(N−1) denote
an optimal control sequence for PN (x0) and xu∗(0) =
x0, xu∗(1), . . . , xu∗(N) denote the corresponding optimal
state trajectory. Then for any i, i = 0, 1, . . . , N − 1, the
control sequence u∗(i), u∗(i+1), . . . , u∗(N−1) is an optimal
control sequence for PN−i(xu∗(i)).

Also, to facilitate the discussion for uniform continuity of
the involved functions, we consider the following definition.

Definition 2: Consider vector spaces Z and Y , a set A ⊂
Z and an arbitrary set W

i. a function φ : Z → Y is said to be uniformly
continuous on A if there exists a K-function1 ω such
that for all z1, z2 ∈ A

‖φ(z1)− φ(z2)‖ ≤ ω (‖z1 − z2‖) .

ii. a function φ : Z ×W → Y is said to be uniformly
continuous on A uniformly in v ∈ W if there exists
a function ω ∈ K such that for all z1, z2 ∈ A and all
v ∈W

‖φ(z1, v)− φ(z2, v)‖ ≤ ω (‖z1 − z2‖) .

The function ω is called the modulus of continuity.
Similar to that found in the appendix of [12], the following

theorem gives sufficient conditions for which the optimal
value function is a uniformly continuous function without
state constraints, i.e., X = X = Rn.

Theorem 3: (Uniform continuity of VN (·)) Let X = Rn,
U(x) ≡ U and suppose that JN : Rn×UN → R is uniformly
continuous on a set S ⊂ Rn uniformly in u(·) ∈ UN . Then
VN (·) is uniformly continuous on S.

Proof: From the assumptions, there exists ωJN
∈ K

such that

‖JN (x1, u(·))− JN (x2, u(·))‖ ≤ ωJN
(‖x1 − x2‖) (2)

for all x1, x2 ∈ S and all u(·) ∈ UN . Since (2) holds for
any choice of u(·) ∈ UN , let ε > 0 and suppose u2ε(·) is an
ε-optimal control for PN (x2). This implies

VN (x1)− VN (x2) ≤ JN (x1, u
2
ε(·))− VN (x2)

≤ JN (x1, u
2
ε(·))− JN (x2, u

2
ε(·)) + ε

≤ ωJN
(‖x1 − x2‖) + ε.

Likewise, for an ε-optimal control u1ε(·) we have

VN (x2)− VN (x1) ≤ JN (x2, u
1
ε(·))− VN (x1)

≤ JN (x2, u
1
ε(·))− JN (x1, u

1
ε(·)) + ε

≤ ωJN
(‖x2 − x1‖) + ε.

Since ε > 0 is arbitrary and this inequality holds for all
x1, x2 ∈ S, this implies that VN (·) is uniformly continuous
on S. Particularly, for all x1, x2 ∈ S

‖VN (x1)− VN (x2)‖ ≤ ωVN
(‖x1 − x2‖) (3)

with ωVN
≤ ωJN

.
In the presence of state constraints, conditions under

which a similar result holds become more technical, see,
e.g., Proposition 8.40 of [5]. We also note that the mod-
ulus ωVN

of continuity represents the sensitivity of the
optimal value function to changes in the parameter x of
the problem PN (x). The proof of the theorem shows that
ωVN

is less than or equal to ωJN
, hence we can expect

that ‖VN (x1) − VN (x2)‖ can not be that much larger than
‖JN (x1, u(·))−JN (x2, u(·))‖ and will typically be smaller.
We will further investigate this relation in Section V.

1A function α is said to be a K-function if α is continuous and strictly
increasing with α(0) = 0.



III. PERTURBED SYSTEMS

Using the control system (1) and the optimal control
sequence u∗(0), u∗(1), . . ., u∗(N−1) obtained from solving
PN (x0), the open-loop controlled system is described by

x(k + 1) = f (x(k), u∗(k)) k = 0, . . . , N − 1 (4)

with x(0) = x0 and the corresponding open-loop trajectory
denoted by xu∗ .

Typically, a real world system is represented by a mathe-
matical model that may fail to take into account disturbance
and other various sources of uncertainties. Mathematical
models are approximations of real systems, hence a mis-
match is inevitable between the predicted states and those
that are measured from the real plant. This gives some notion
that an open-loop control, the optimal control sequence ob-
tained from the OCP solved at time 0, may not give the best
control strategy as the system evolves through time. We aim
to investigate the effects of the disturbance and the advantage
of using RHC in which we perform re-optimization each time
step. In order to simplify the exposition, in the sequel we
assume the existence of an optimal control sequence u∗(·)
for each x ∈ X with UN (x) 6= ∅.

By using shrinking horizon MPC, we can then define a
feedback law µ : X → U as follows. At each sampling
time k, we solve PN−k(x(k), k), i.e., we perform a re-
optimization giving an optimal control sequence u∗k(j), j =
0, . . . , N−1−k corresponding to the initial value x0 = x(k)
and a resulting trajectory xu∗

k
(j), j = 0, . . . , N−k. Note that

for each sampling time k, the control horizon shrinks. With
this, we define

µ(x(k)) = u∗k(0) k = 0, . . . , N − 1

and the closed-loop controlled system is described by

x(k + 1) = f (x(k), µ(x(k))) k = 0, . . . , N − 1 (5)

Due to the dynamic programming principle in Theorem 1,
in the nominal case where no uncertainties are present, (4)
and (5) coincide. But as mentioned above this is not the case
in the presence of perturbations. We examine whether RHC
addresses the drawbacks that the control design suffers from
upon using open-loop control. To this end, we introduce the
perturbed closed-loop model

x(k + 1) = f (x(k), µ(x(k) + e(k))) + d(k) (6)

where e(k) ∈ X represents state measurement errors and
d(k) ∈ X represents external perturbation and modeling
errors. Due to space limitations, here we only consider e ≡ 0
and note that the case e 6≡ 0 can be derived from this case
using techniques similar to the treatment in robust stability
proofs seen in Chapter 8 of [5].

In order to measure the benefit of re-optimization, i.e., of
computing u∗k(·) in each step, we compare the performance
of (6) with that of the perturbed open-loop system given by

x(k + 1) = f (x(k), u∗(k))) + d(k) (7)

To facilitate the discussion on following the trajectories
through time where perturbations occur and re-optimization
is performed, we use the following notation.

Let xj,p,r denote the state trajectory element at time
j that have gone through p perturbations at time instants
t = 1, . . . , p where j ≥ p, and r re-optimizations have
been performed at time instants t = 1, . . . , r where p ≥ r.
In this setting, we only put our attention on the nominal
and perturbed open-loop trajectories (4) and (7) and on the
shrinking horizon MPC trajectory generated by (6) in which
a re-optimization is performed in each step. In the newly
introduced notation, the trajectories generated by (4), (7)
and (6) are given by xj,0,0, xj,j,0 and xj,j,j , respectively,
for j = 0, . . . , N .

Let u∗j,p,r denote the optimal control sequence obtained by
performing a re-optimization with an initial value xj,p,r−1
and optimization horizon N − j, i.e., u∗j,p,r is obtained
by solving PN−j(xj,p,r−1). Since the initial value does
not change when performing a re-optimization, the identity
xj,p,r−1 = xj,p,r holds. We also remark that for our analysis
it is sufficient to consider states of the form xj,p,r with
r = 0, p, p− 1.

x0,0,0

x1,0,0

x2,0,0

x3,0,0

u∗0,0,0(0)

u∗0,0,0(1)

u∗0,0,0(2)

x1,1,0

x2,2,0
x3,3,0

u∗0,0,0(0)

u∗0,0,0(1)

u∗0,0,0(2)

x1,1,1

x2,2,1
x2,2,2

x3,3,2
x3,3,3

u∗1,1,1(0)
u∗2,2,2(0)

d(1)

d(2)

d(2)

d(3)

d(3)

Fig. 1. Trajectories through time where perturbations occur and re-
optimizations are performed

Figure 1 illustrates the trajectories through time where
perturbations occur and re-optimizations are performed for
the final batch time N = 3. At time t = 0, by solving
P3(x0,0,0), we obtain an open-loop optimal control sequence
u∗0,0,0(j) = u∗(j), j = 0, 1, 2 for which we can generate a
nominal open-loop trajectory xj,0,0, j = 0, . . . , 3 via (4)
shown in black in the sketch. For an additive perturbation
d(·), the blue trajectory in Figure 1 indicates the open-loop
perturbed trajectory xj,j,0, j = 0, . . . , 3 generated by (7).
Here each transition (shown in solid blue) is composed of the
nominal transition f(xj,j,0, u∗0,0,0(j)) (blue dashed) followed
by the addition of the perturbation d(j) (red dashed). Finally,
the trajectory xj,j,j obtained by re-optimization in each step
and generated by (6) with perturbation d is shown piecewise
in blue, green and orange, with the different colors indicating
the different control sequences u∗j,j,j , j = 0, . . . , 2 whose
first pieces are used in the transition. Again, the nominal
transition and the effect of the perturbation d(j) are indicated



as dashed lines and the resulting perturbed transitions from
xj,j,j to xj+1,j+1,j = xj+1,j+1,j+1 as solid lines.

IV. BENEFITS OF RE-OPTIMIZATION

To obtain estimates by comparing trajectories where per-
turbations may occur and/or re-optimization may be per-
formed, we first introduce some further notation. Similar to
how xj,p,r was defined, for j ≥ p, p ≥ r, r = 0, p, p − 1
we define the stage cost

λj,p,r = `
(
xj,p,r, u

∗
r,r,r(j − r)

)
(8)

From this definition, to determine the control needed to
compute the stage cost incurred for the state xj,p,r we simply
go back to the last instant of the optimization, namely at
time r and use the optimal control sequence obtained there
wherein horizon N − r and initial value xr,r,r are used.

In order to simplify the numbering in the subsequent
computations, we extend the definition to give meaning to
the notation when j < p, p ≥ r, r = 0, p, p− 1 through

λj,p,r :=

{
λj,j,j if r 6= 0
λj,j,0 if r = 0.

(9)

Remark 4: Although the previous discussion yields
xj,j,j−1 = xj,j,j , we see that λj,j,j−1 6= λj,j,j since
λj,j,j−1 = `

(
xj,j,j−1, u

∗
j−1,j−1,j−1(1)

)
while λj,j,j =

`
(
xj,j,j , u

∗
j,j,j(0)

)
.

In the presence of uncertainties or perturbations, we per-
form re-optimization in the hope of having a coping mecha-
nism against the differences between the real system and the
nominal model to redirect the trajectory back to the desired
behavior aiming to stay ’close’ to the nominal situation.
We investigate whether re-optimization indeed gives such
advantage.

The idea is to find quantifiable relations among the var-
ious trajectory scenarios. More precisely, we compare the
following scenarios.

Definition 5: Given an initial value x0,0,0 = x0 ∈ X, we
define the following performance measures.

i. The value of the nominal optimal trajectory

Jnom
N (x0) :=

N−1∑
j=0

λj,0,0

ii. The value of the perturbed trajectory with nominal
optimal control sequence

Jpert
N (x0) :=

N−1∑
j=0

λj,j,0

iii. The value of the perturbed trajectory with re-optimized
control

J reopt
N (x0) :=

N−1∑
j=0

λj,j,j

We recall that in Figure 1 the trajectories corresponding
to these performance indices are indicated in, black (i.), blue
(ii.) and piecewise in blue, green and orange (iii.) and that
they are generated by (4), (7) and (6), respectively. Further, it

is easily seen that Jnom
N (x0) = VN (x0) holds. This nominal

optimal value will be our reference in the following analysis.
The following theorem provides the basis for comparing

Jnom
N (x0) and J reopt

N (x0). This comparison is then stated in
the subsequent corollary.

Theorem 6: Assume PN−j(xj,j,j), j = 0, . . . , N − 1 is
feasible. For m = 1, . . . , N − 1,∣∣∣∣∣∣VN (x0,0,0)−

N−1∑
j=0

λj,m,m

∣∣∣∣∣∣
≤

m∑
j=1

|VN−j(xj,j−1,j−1)− VN−j(xj,j,j)| (10)

Proof: First, for each time step, we compare the
total cost along nominal trajectory to the trajectory where
perturbation is introduced in the next time step wherein
optimization is performed. Using (8) and (9) we obtain the
following set of identities.

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,1

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ0,0,0 +
N−1∑
j=1

λj,0,0 − λ0,1,1 −
N−1∑
j=1

λj,1,1

∣∣∣∣∣∣
= |VN−1(x1,0,0)− VN−1(x1,1,1)|

∣∣∣∣∣∣
N−1∑
j=0

λj,1,1 −
N−1∑
j=0

λj,2,2

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ0,1,1 + λ1,1,1 +

N−1∑
j=2

λj,1,1

−λ0,2,2 − λ1,2,2 −
N−1∑
j=2

λj,2,2

∣∣∣∣∣∣
= |VN−2(x2,1,1)− VN−2(x2,2,2)|

Inductively, for m = 1, . . . , N − 1,

∣∣∣∣∣∣
N−1∑
j=0

λj,m−1,m−1 −
N−1∑
j=0

λj,m,m

∣∣∣∣∣∣
=
∣∣∣λ0,m−1,m−1 + . . . + λm−1,m−1,m−1

+

N−1∑
j=m

λj,m−1,m−1 − λ0,m,m − . . . − λm−1,m,m

−
N−1∑
j=m

λj,m,m

∣∣∣
= |VN−m(xm,m−1,m−1)− VN−m(xm,m,m)|

Now with the aid of the identities above, we have the
following estimate. For m = 1, . . . , N − 1,



∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,m,m

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,1 +

N−1∑
j=0

λj,1,1 − . . .

. . .+

N−1∑
j=0

λj,m−1,m−1 −
N−1∑
j=0

λj,m,m

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,1

∣∣∣∣∣∣+
. . .+

∣∣∣∣∣∣
N−1∑
j=0

λj,m−1,m−1 −
N−1∑
j=0

λj,m,m

∣∣∣∣∣∣
= |VN−1(x1,0,0)− VN−1(x1,1,1)|

+ |VN−2(x2,1,1)− VN−2(x2,2,2)|+

. . .+ |VN−m(xm,m−1,m−1)− VN−m(xm,m,m)|

=

m∑
j=1

|VN−j(xj,j−1,j−1)− VN−j(xj,j,j)|

Using uniform continuity assumptions on the optimal
value function we arrive at the following corollary.

Corollary 7: Suppose Vi, i = 1, . . . , N , is uniformly
continuous on X with modulus of continuity ωVi

. Consider
an initial value x0 ∈ X and a perturbation sequence d(·) such
that PN−j(xj,j,j), j = 0, . . . , N − 1 is feasible. Then

∣∣Jnom
N (x0)− J reopt

N (x0)
∣∣ ≤ N−1∑

j=1

ωVN−j
(‖d(j)‖) . (11)

Proof: The statement follows immediately from Theo-
rem 6 applied with m = N − 1 observing that Jnom

N = VN
and xj,j,j − xj,j−1,j−1 = d(j).

Next we provide the analogous analysis for comparing
Jnom
N (x0) and Jpert

N (x0).
Theorem 8: Assume xj,j,0 ∈ X for all j = 0, . . . , N − 1.

For m = 1, . . . , N − 1,∣∣∣∣∣∣VN (x0,0,0)−
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣
≤

m∑
j=1

|JN−j(xj,j−1,0, u∗(·+ j))

−JN−j(xj,j,0, u∗(·+ j))| (12)

Proof: Let u∗ = u∗0,0,0. Similar to the proof of Theorem
6, we obtain the inequalities

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,0

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ0,0,0 +
N−1∑
j=1

λj,0,0 − λ0,1,0 −
N−1∑
j=1

λj,1,0

∣∣∣∣∣∣
= |JN−1(x1,0,0, u∗(·+ 1))− JN−1(x1,1,0, u∗(·+ 1))|
and∣∣∣∣∣∣
N−1∑
j=0

λj,1,0 −
N−1∑
j=0

λj,2,0

∣∣∣∣∣∣
=

∣∣∣∣∣∣λ0,1,0 + λ1,1,0 +

N−1∑
j=2

λj,1,0

−λ0,2,0 − λ1,2,0 −
N−1∑
j=2

λj,2,0

∣∣∣∣∣∣
= |JN−2(x2,1,0, u∗(·+ 2))− JN−2(x2,2,0, u∗(·+ 2))|
Inductively, for m = 1, . . . , N − 1,∣∣∣∣∣∣

N−1∑
j=0

λj,m−1,0 −
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣
=
∣∣∣λ0,m−1,0 + . . . + λm−1,m−1,0

+

N−1∑
j=m

λj,m−1,0 − λ0,m,0 − . . . − λm−1,m,0

−
N−1∑
j=m

λj,m,0

∣∣∣
= |JN−m(xm,m−1,0, u

∗(·+m))
− JN−m(xm,m,0, u

∗(·+m))|
With these above, for m = 1, . . . , N − 1,∣∣∣∣∣∣

N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,0 +

N−1∑
j=0

λj,1,0 − . . .

. . .+

N−1∑
j=0

λj,m−1,0 −
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,0

∣∣∣∣∣∣+
. . .+

∣∣∣∣∣∣
N−1∑
j=0

λj,m−1,0 −
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣
=

m∑
j=1

|JN−j(xj,j−1,0, u∗(·+ j))

− JN−j(xj,j,0, u
∗(·+ j))|



Using uniform continuity assumptions on the objective,
the following statement directly follows.

Corollary 9: Suppose Ji, i = 1, . . . , N , is uniformly
continuous uniformly in u on X with modulus of continuity
ωJi

. Consider an initial value x0 ∈ X and a perturbation
sequence d(·) such that xj,j,0 ∈ X for all j = 0, . . . , N −1.
Then

∣∣Jnom
N (x0)− Jpert

N (x0)
∣∣ ≤ N−1∑

j=1

ωJN−j
(‖d(j)‖) . (13)

Proof: The statement follows from Theorem 8 applied
with m = N − 1 observing that Jnom

N = VN and xj,j,0 −
xj,j−1,0 = d(j).

Our analysis reveals that the difference between re-
optimizing and not re-optimizing can be quantitatively ex-
pressed by the difference between the moduli of continuity
ωVi

of the optimal value functions compared to the moduli
of continuity ωJi of the open loop functionals Ji. Indeed,
while the difference between Jnom

N and J reopt
N is determined

by the ωVi
, the difference between Jnom

N and Jpert
N depends on

the ωJi
. In Theorem 3 we have already seen that ωVi

≤ ωJi

holds, which implies that re-optimization should not worsen
the performance — modulo the conservatism introduced in
our analysis due to the triangle inequalities used in the proofs
of Theorems 6 and 8.

In practice, our hope is, of course, that re-optimization will
not only “not worsen” the performance but rather improve
it. For this reason, in the following section, we analyse the
moduli of continuity for linear quadratic problems in order
to identify situations in which an improvement due to re-
optimization can indeed be expected.

V. CONTROLLABILITY AND STABILITY

In this section we consider linear finite dimensional sys-
tems of the form

x(k + 1) = Ax(k) +Bu(k)

with X = X = Rn, U = U = Rm and matrices A ∈ Rn×n,
B ∈ Rn×m. The stage cost is given by the quadratic function

`(x, u) = xTQx+ uTRu

with symmetric and positive definite matrices Q ∈ Rn×n

and R ∈ Rm×m.
The simplifying assumptions of linear dynamics, positive

definite quadratic costs and no constraints are mainly im-
posed in order to simplify the presentation of the two key
properties controllability and stability in this section. Similar
results can also be obtained for nonlinear and constrained
problems at the expense of more technically involved defi-
nitions and proofs.

We first estimate the modulus of continuity ωJN
.

Proposition 10: Let σ be the eigenvalue of A with max-
imal modulus |σ|. Let S ⊂ Rn be a bounded set, N ∈ N

and ε > 0. For a constant K > 0 consider the set of control
sequences

UN
K = {u(·) ∈ UN | ‖u(k)‖ ≤ K for all k = 0, . . . , N − 1}.

(14)
Then there exists real constants c1 > 0 and c2 = c2(ε) > 0
such that the modulus of continuity ωJN

of JN on S, uniform
in u(·) ∈ UN

K satisfies

c1r
2
N−1∑
k=0

|σ|2k ≤ ωJN
(r) ≤ c2

N−1∑
k=0

|σ|kr.

Proof: For any two initial values x1, x2 ∈ Rn and
any control sequence u(·) ∈ UN , the difference e(k) :=
xu(k, x2)− xu(k, x1) can be written as

e(k) = Ake(0).

Setting x1 := 0 and x2 := rv where v is an eigenvector
for σ with ‖v‖ = 1 then yields e(0) = rv and thus e(k) =
σkrv. Since Q is positive definite there exists c1 > 0 with
vTQv = c1 and for u(·) :≡ 0 we obtain

`(xu(k, x2), u(k))− `(xu(k, x1), u(k)) = e(k)TQe(k)

= c1r
2(σk)2.

This yields the lower bound. The upper bound follows on the
one hand from the fact that for ε > 0 there exists c̃2 > 0 such
that ‖Akx‖ ≤ c̃2(|σ|+ε)k‖x‖ holds (this follows, e.g., from
[13, Satz 11.6]). On the other hand, there exists a compact
set D ⊂ Rn such that for all x0 ∈ S and all u(·) ∈ UN

K the
relation xu(k, x0) ∈ D holds for all k = 0, . . . , N − 1. On
this set D the stage cost ` is Lipschitz in x with a constant
L > 0, which yields the claimed upper bound with c2 = Lc̃2.

Observe that the lower bound on ωJN
(r) is independent of

the choice of S, ε, K and N while the upper bound typically
depends on these parameters.

Proposition 10 states that the modulus of continuity ωJN

is large whenever |σ| is large and small if |σ| is small. In
particular, ωJN

grows unboundedly in N if the system is not
open-loop asymptotically stable, i.e., if |σ| ≥ 1.

Observe that Theorem 3 applies to the setting in this
section, hence the upper bound on ωJN

from Proposition 10
also applies to ωVN

. In addition, under suitable conditions,
ωVN

can be considerably smaller than ωJN
, as the following

proposition shows.
Proposition 11: Assume that the pair (A,B) is control-

lable. Let S ⊂ Rn be a bounded set. Then there exists a real
constant c > 0 such that the modulus of continuity ωVN

on
S satisfies

ωVN
(r) ≤ cr

for all N ∈ N.
Proof: Controllability implies that there exists a con-

stant c̃ > 0 such that for any x0 ∈ Rn we can find a control
ux0(·) ∈ Un with ‖ux0(k)‖ ≤ c̃‖x0‖ for all k = 0, . . . , n−1
and xux0

(n, x0) = 0. This implies that on the bounded set
S there exists a uniform upper bound M of VN which can



be chosen independent of N . Then, positive definiteness of
Q and R implies that the optimal trajectories remain in a
compact set D and that the optimal control sequences lie in
the set UN

K from (14), where D and K can also be chosen
independent of N .

Now for N ≤ n the assertion follows from Proposition 11
in conjunction with Theorem 3. For N > n, consider two
initial values x1, x2 ∈ S and let u?(·) be the optimal control
for x1.

Let x0 := x2 − x1 and pick the control sequence ux0 ∈
Un from the controllability property, which we extend with
ux0

(k) := 0 for all k ≥ n, implying xux0
(k, x2 − x1) = 0

for all k ≥ n. Then, for ũ? = u? + ux0
we get

xũ?(k, x2) = xu?(k, x1) + xux0
(k, x2 − x1) = xu?(k, x1)

for all k ≥ n. Since ` is Lipschitz on S × UK , we can find
ĉ > 0 such that

`(xũ?(k, x2), ũ
?(k))− `(xu?(k, x1), u

?(k)) ≤ ĉ‖x2 − x1‖

for all k = 0, . . . , n − 1, while for k ≥ n this difference
equals 0. This implies the desired estimate with c = nĉ.

As a consequence, we expect the difference between
ωJN

and ωVN
to be particularly large when the system is

open-loop unstable (implying a large ωJN
) and controllable

(implying a small ωVN
). In the next section, we present

examples which numerically illustrate that this is exactly
what happens.

VI. NUMERICAL EXAMPLES

Here we consider an illustrative numerical example for
which we compare the nominal case Jnom

N , the case when
nominal solution is applied to perturbed systems Jpert

N and the
shrinking horizon MPC J reopt

N where the re-optimization is
carried out each time step due to the mentioned perturbation.
Consider the nominal system described by

x+ = αx+ u (15)

and the corresponding perturbed system

x+ = αx+ u+ d (16)

where d is an additive perturbation with a performance index
PN (x0) wherein

`(x, u) = x2 + u2.

Note that the stage cost ` forces the optimal trajectory to
converge to the origin 0, hence the distance of the perturbed
trajectory from the origin can be used as a visual performance
measure.

If |α| < 1, then (15) is asymptotically stable with 0 as
the equilibrium, and for |α| > 1, it is unstable. In both
cases, the system is controllable. Taking final batch time as
N = 7, Figure 2 provides a visualization of the trajectories
throughout time for a chosen α for x0 = −4. With i =
0, . . . N , xi,0,0 represents the nominal trajectory related to
Jnom
N (x0), while xi,i,0 denotes the trajectory corresponding to
Jpert
N (x0), i.e., when the nominal open-loop control is applied

to the perturbed system (16). Finally, xi,i,i represents the
trajectory with re-optimization, corresponding to J reopt

N (x0).
The perturbations d(·) are randomly generated from the
interval [−0.1, 0.1]. Figure 2(top) illustrates the case when
α = 0.5 for which (15) is stable where the three described
trajectories can be compared. Since the system is open-loop
stable, one would expect not much improvement from re-
optimization, which is exactly what is visible in the figure,
as the deviation from the nominal solution is only mildly
improved by re-optimization. In contrast to this, Figure
2(bottom) shows the case α = 1.5, in which the system
is open-loop unstable and controllable. Here our analysis
predicts a large benefit of the re-optimization procedure
which is clearly visible in the simulation. The similar effect is
visible in Table I in which the values of Jnom

N (x0), J
pert
N (x0)

and J reopt
N (x0) for x0 = −4 are shown. In the open-loop

unstable and controllable system with α = 1.5, one can
notice a better performing J reopt

N (x0) compared to Jnom
N (x0).

This is due to the fact that here the introduced random
perturbations do by chance have a positive effect on the
performance because they drive the system faster towards
0.
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Fig. 2. State trajectories for the stable system with α = 0.5 (top) and for
the unstable system with α = 1.5 (bottom)

Figure 3 and Table II illustrate a case when re-optimization
does not give much benefit because the system is not control-



TABLE I
COMPARISON OF CONTROL SCHEME PERFORMANCE

α = 0.5 α = 1.5

Jnom
N (x0) 18.1245 42.0829

J
pert
N (x0) 22.6457 613.1214

J
reopt
N (x0) 18.8812 24.8458

lable. In this example, we set α = 1.5 and impose a control
constraint u ≥ 0 which renders the system uncontrollable.
Figure 3 shows the system behavior for the unstable case
α = 1.5. Compared to Figure 2(bottom) one sees that the
performance of the re-optimization significantly deteriorates,
though it still provides some improvement over using the
open-loop optimal trajectory. The numerical values in Table
II confirm this behavior. In order to increase the visibility of
this effect, here we used the constant perturbations d(k) =
0.1, i.e., the maximum positive additive perturbation, at each
time step.
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Fig. 3. State trajectories for the unstable system with α = 1.5 with
constraint u ≥ 0 and maximum positive perturbation at each time step

TABLE II
COMPARISON OF CONTROL SCHEME PERFORMANCE

α = 1.5

Jnom
N (x0) 42.0829

J
pert
N (x0) 1763.9

J
reopt
N (x0) 581.7244

VII. CONCLUSION AND OUTLOOK

In this work, we analyzed discrete time finite horizon
optimal control problems and obtained estimates for the
improvements brought about by re-optimizing at each iterate
in the presence of disturbance on the system. The benefit
of re-optimization is exhibited through relations involving
moduli of continuity of objective functions and optimal
value functions. These moduli are, in turn, determined by
stability and controllability properties of the system under
consideration. This work will be extended to the multistep
feedback MPC setting from [10] aiming to conduct an
analysis on the benefit of re-optimization for MPC schemes
approximating infinite horizon optimal control problems.
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[10] V. Palma, L. Grüne, Stability, performance and robustness of
sensitivity-based multistep feedback NMPC, Extended Abstract in:
Proceedings of the 20th International Symposium on Mathematical
Theory of Networks and Systems — MTNS 2012, CD-ROM, Paper
No. 68, 4 pages

[11] H. J. Pesch, Numerical computation of neighboring optimum feedback
control schemes in real-time, Applied Mathematics and Optimization
5 (1979), 231–252.

[12] J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory
and Design. Nob Hill Publishing, Madison, 2009.
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