Emergent Behaviors and Traffic Density among Heuristically-Driven Intelligent Vehicles using V2V Communication

Abstract : In this paper, we study the global traffic density and emergent traffic behavior of several hundreds of intelligent vehicles, as a function of V2V communication (for the ego vehicle to perceive traffic) and path-finding heuristics (for the ego vehicle to reach its destination), in urban environments. Ideal/realistic/no V2V communication modes are crossed with straight-line/towards-most-crowded/towards-least-crowded pathfinding heuristics to measure the average trip speed of each vehicle. The behaviours of intelligent vehicles are modelled by a finite state automaton. The V2V communication model is also built based on signal propagation models in an intersection scenario and a Markov-chain based MAC model. Our experiments in simulation over up to 400 vehicles exhibit attractive insights: 1) communication's impact is positive for the performance of the emergent vehicles' behaviour, however, 2) the path-finding heuristics may not obtain their expected collective behaviour due to the communications errors in realistic road environment.
Type de document :
Communication dans un congrès
2014 International Conference on Connected Vehicles & Expo, Nov 2014, Vienna, Austria. 2014
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01069062
Contributeur : Oyunchimeg Shagdar <>
Soumis le : vendredi 26 septembre 2014 - 17:23:19
Dernière modification le : jeudi 2 août 2018 - 12:02:03
Document(s) archivé(s) le : vendredi 14 avril 2017 - 15:25:07

Fichier

edas.final-1569998729.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01069062, version 1

Collections

Citation

Philippe Morignot, Oyunchimeg Shagdar, Fawzi Nashashibi. Emergent Behaviors and Traffic Density among Heuristically-Driven Intelligent Vehicles using V2V Communication. 2014 International Conference on Connected Vehicles & Expo, Nov 2014, Vienna, Austria. 2014. 〈hal-01069062〉

Partager

Métriques

Consultations de la notice

278

Téléchargements de fichiers

236