A. Criminisi, J. Shotton, and E. Konukoglu, Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning. no. MSR- TR, 2011.

I. Guyon and A. Elisseeff, An Introduction to Variable and Feature Selection, Journal of Machine Learning Research, pp.1157-1182, 2003.

P. Jais, P. Maury, P. Khairy, F. Sacher, I. Nault et al., Elimination of Local Abnormal Ventricular Activities: A New End Point for Substrate Modification in Patients With Scar-Related Ventricular Tachycardia, Circulation, vol.125, issue.18, pp.2184-96, 2012.
DOI : 10.1161/CIRCULATIONAHA.111.043216

R. Kohavi, A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection, Proceedings of the 14th International Joint Conference on Artificial Intelligence -Volume 2. IJCAI'95, pp.1137-1143, 1995.

R. Kohavi and J. G. , Wrappers for feature subset selection, Artificial Intelligence, pp.273-324, 1997.
DOI : 10.1016/S0004-3702(97)00043-X

V. Lempitsky, M. Verhoek, A. Noble, J. Blake, and A. , Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography, FIMH, pp.447-456, 2009.
DOI : 10.1109/TMI.2007.906089

T. Ludvik, D. Smutek, A. Shimizu, and H. Kobatake, 3D Extension of Haralick Texture Features for Medical Image Analysis, Proceedings of the Fourth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications. SPPRA 07, pp.350-355, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

M. Ruschhaupt, W. Huber, A. Poustka, and U. Mansmann, A Compendium to Ensure Computational Reproducibility in High-Dimensional Classification Tasks, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.37, 2004.
DOI : 10.2202/1544-6115.1078

B. Zadrozny, Cost-sensitive learning by cost-proportionate example weighting, Third IEEE International Conference on Data Mining, pp.435-442, 2003.
DOI : 10.1109/ICDM.2003.1250950