Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs

Jérôme Bolte 1 Edouard Pauwels 2
1 GREMAQ
GREMAQ - Groupe de recherche en économie mathématique et quantitative
2 LAAS-MAC - Équipe Méthodes et Algorithmes en Commande
LAAS - Laboratoire d'analyse et d'architecture des systèmes [Toulouse]
Abstract : In view of solving nonsmooth and nonconvex problems involving complex constraints (like standard NLP problems), we study general maximization-minimization procedures produced by families of strongly convex sub-problems. Using techniques from semi-algebraic geometry and variational analysis -in particular Lojasiewicz inequality- we establish the convergence of sequences generated by this type of schemes to critical points. The broad applicability of this process is illustrated in the context of NLP. In that case critical points coincide with KKT points. When the data are semi-algebraic or real analytic our method applies (for instance) to the study of various SQP methods: the moving balls method, Sl1QP, ESQP. Under standard qualification conditions, this provides -to the best of our knowledge- the first general convergence results for general nonlinear programming problems. We emphasize the fact that, unlike most works on this subject, no second-order assumption and/or convexity assumptions whatsoever are made. Rate of convergence are shown to be of the same form as those commonly encountered with first order methods.
Type de document :
Article dans une revue
Mathematics of Operations Research, INFORMS, 2016
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01069737
Contributeur : Edouard Pauwels <>
Soumis le : lundi 29 septembre 2014 - 16:53:08
Dernière modification le : mercredi 28 février 2018 - 10:23:11
Document(s) archivé(s) le : mardi 30 décembre 2014 - 11:45:25

Fichier

SQP.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01069737, version 1

Citation

Jérôme Bolte, Edouard Pauwels. Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs. Mathematics of Operations Research, INFORMS, 2016. 〈hal-01069737〉

Partager

Métriques

Consultations de la notice

317

Téléchargements de fichiers

126