R. A. Adams, Sobolev spaces, 1975.

L. Ambrosio, N. Fusco, and D. Pallara, Free Discontinuity Problems and Special Functions with Bounded Variation
DOI : 10.1007/978-3-0348-8974-2_2

J. Bleyer and P. De-buhan, On the performance of non-conforming finite elements for the upper bound limit analysis of plates, International Journal for Numerical Methods in Engineering, vol.43, issue.3
DOI : 10.1002/nme.4460

URL : https://hal.archives-ouvertes.fr/hal-00776908

M. W. Braestrup, Yield-line theory and limit analysis of plates and slabs, Magazine of Concrete Research, vol.22, issue.71
DOI : 10.1680/macr.1970.22.71.99

A. Braides, Gamma-convergence for Beginners, p.11, 2002.
DOI : 10.1093/acprof:oso/9780198507840.001.0001

S. C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics. Springer, vol.12, p.13, 2008.

A. Capsoni and L. Corradi, Limit analysis of plates-a finite element formulation, Structural Engineering and Mechanics, vol.8, issue.4, pp.325-341, 1999.
DOI : 10.12989/sem.1999.8.4.325

P. Ciarlet and P. Destuynder, Justification of the 2-dimensional linear plate model, J. Mécanique, vol.18, pp.315-344, 1979.

G. and D. Maso, An Introduction to ? -convergence, of Progress in nonlinear differential equations and their applications, p.16

. Problems-in-plasticity, Archive for Rational Mechanics and Anal, pp.123-161, 1989.

E. N. Fox, Limit analysis for plates: the exact solution for a clamped square plate of isotropic homogeneous material obeying 23

T. Hadhri, Fonction convexe d'une mesure, C.R. Acad. Sci. Paris, vol.301, pp.687-690, 1985.

. Hétérogènes, Thése d'etat, p.30, 1986.

T. Hadhri, Prise en compte d'une force linéique de frontiére dans un modèle de plaques de hencky comportant une non-linèaritè 31

P. G. Hodge-jr and T. Belytschko, Numerical Methods for the Limit Analysis of Plates, Journal of Applied Mechanics, vol.35, issue.4, p.33, 1968.
DOI : 10.1115/1.3601308

A. Jennings, On the identification of yield-line collapse mechanisms, Engineering Structures, vol.18, issue.4, pp.332-337, 1996.
DOI : 10.1016/0141-0296(95)00153-0

D. Johnson, Mechanism determination by automated yield-line analysis, Struct. Eng, vol.72, pp.323-323, 1994.

C. V. Le, M. Gilbert, and H. Askes, Limit analysis of plates using the EFG method and second-order cone programming, International Journal for Numerical Methods in Engineering, vol.3, issue.13, p.36
DOI : 10.1002/nme.2535

C. V. Le, H. Nguyen-xuan, and H. Nguyen-dang, Upper and lower bound limit analysis of plates using FEM and second-order 38

. Mosek, The Mosek optimization toolbox for MATLAB manual, 2008.

J. Munro, A. M. Da, and . Fonseca, Yield line method by finite elements and linear programming, Struct. Eng, vol.56, pp.37-44, 1978.

C. Ortner and D. Praetorius, On the convergence of adaptive nonconforming finite element methods for a class of convex 42

W. Prager, An Introduction to Plasticity. Addison-Wesley series in the engineering sciences: Mechanics and thermodynamics, p.44

T. Rockafellar, of Grundlehren der mathematischen Wissenschaften, Convex Analysis, vol.224, p.46

M. A. Save, C. E. Massonnet, and G. De-saxce, Plastic limit analysis of plates, shells, and disks, p.48, 1997.

J. J. Telega, Epi-limit on HB and homogenization of heterogeneous plastic plates. Nonlinear Anal, pp.499-529, 1995.

R. Temam, Mathematical problems in plasticity, p.50, 1985.

S. Zhou, Y. Liu, and S. Chen, Upper bound limit analysis of plates utilizing the C1 natural element method, Computational Mechanics, vol.277, issue.1265, p.51
DOI : 10.1007/s00466-012-0688-8