Skip to Main content Skip to Navigation
New interface
Conference papers

Atlas-based Transfer of Boundary Conditions for Biomechanical Simulation

Abstract : An environment composed of different types of living tissues (such as the abdominal cavity) reveals a high complexity of boundary conditions, which are the attachments (e.g. connective tissues, ligaments) connecting different anatomical structures. Together with the material properties, the boundary conditions have a significant influence on the mechanical response of the organs, however corresponding correct me- chanical modeling remains a challenging task, as the connective struc- tures are difficult to identify in certain standard imaging modalities. In this paper, we present a method for automatic modeling of boundary con- ditions in deformable anatomical structures, which is an important step in patient-specific biomechanical simulations. The method is based on a statistical atlas which gathers data defining the connective structures at- tached to the organ of interest. In order to transfer the information stored in the atlas to a specific patient, the atlas is registered to the patient data using a physics-based technique and the resulting boundary conditions are defined according to the mean position and variance available in the atlas. The method is evaluated using abdominal scans of ten patients. The results show that the atlas provides a sufficient information about the boundary conditions which can be reliably transferred to a specific patient. The boundary conditions obtained by the atlas-based transfer show a good match both with actual segmented boundary conditions and in terms of mechanical response of deformable organs.
Document type :
Conference papers
Complete list of metadata

Cited literature [12 references]  Display  Hide  Download
Contributor : Rosalie Plantefeve Connect in order to contact the contributor
Submitted on : Wednesday, October 1, 2014 - 10:25:07 AM
Last modification on : Tuesday, October 25, 2022 - 4:21:22 PM
Long-term archiving on: : Friday, January 2, 2015 - 10:37:07 AM


Files produced by the author(s)


  • HAL Id : hal-01070339, version 1


Rosalie Plantefeve, Igor Peterlik, Hadrien Courtecuisse, Raffaella Trivisonne, Jean-Pierre Radoux, et al.. Atlas-based Transfer of Boundary Conditions for Biomechanical Simulation. MICCAI - 17th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2014, Boston, United States. ⟨hal-01070339⟩



Record views


Files downloads