N
N

N

HAL

open science

A Generic Pixel Distribution Architecture for Parallel
Video Processing

Karim Mohamed Abedallah Ali, Rabie Ben Atitallah, Said Hanafi, Jean-Luc
Dekeyser

» To cite this version:

Karim Mohamed Abedallah Ali, Rabie Ben Atitallah, Said Hanafi, Jean-Luc Dekeyser. A Generic
Pixel Distribution Architecture for Parallel Video Processing. International Conference on Recon-
figurable Computing and FPGAs - ReConFig 2014, Dec 2014, Cancun, Mexico.

Fig.2014.7032547 . hal-01070541

HAL Id: hal-01070541
https://inria.hal.science/hal-01070541
Submitted on 1 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1109/ReCon-

https://inria.hal.science/hal-01070541
https://hal.archives-ouvertes.fr

A Generic Pixel Distribution Architecture for
Parallel Video Processing

Abstract—I/O data distribution for neighbourhood operations
processed in parallel computing dominates the multimedia video
processing domain. Hardware designers are confronted with the
challenge of architecture obsolescence due to the lack of flexibility
to adapt the I/0O system while upgrading the parallelism level. The
usage of reconfigurable computing solves the problem partially
with the capability of hardware partitioning according to the
application requirements.

Taking this aspect into consideration, we propose a generic
I/0 data distribution model dedicated to parallel video processing.
Several parameters can be configured according to the required
size of macro-block with the possibility to control the sliding
step in both horizontal and vertical directions. The generated
model is used as a part of the parallel architecture processing
multimedia applications. We implemented our architecture on the
Xilinx Zynq ZC706 FPGA evaluation board for two applications:
the video downscaler (1:16) and the convolution filter.

The efficiency of our system for distributing pixels among
parallel IPs is demonstrated through several experiments. The
experimental results show the increase in the design productivity
using the automatic code generation, the low hardware cost of
our solution and how flexible is the model to be configured for
different distribution scenarios.

I. INTRODUCTION

Nowadays, embedded video processing applications are
becoming more and more widespread in multimedia systems.
Two main aspects characterize these applications. The first
aspect involves the data structures, which are processed in
general in the form of different macro-block sizes according
to the neighbourhood processing algorithm. Video scaling,
median filter, and convolution transformation are examples of
macro-block-based video processing. In addition, these data
come from High Definition (HD) streaming image sensors
supporting high frame rates. The second aspect concerns the
potential parallelism available in the application functionality.
These two aspects lead to high requirements in terms of
processing power and buffering capacity. Hence, the hardware
designers are obliged to come up with new architecture for
executing this field of applications.

An unavoidable solution to meet the performance and
flexibility goals consists in using FPGAs that offer high
computation rates per watt and adaptability to the application
constraints. Today, FPGAs are increasingly used to build
complex integrated video processing applications. FPGAs offer
cheap and fast programmable silicon among the most advanced
fabrication processes [11]. Furthermore, FPGA technology
enables to implement massively parallel architectures due to
the huge number of programmable logic fabrics available on
the chip [4]. However, most of the designed solutions in the
literature aim for customizing the architectures to balance the
implementation constraints between the application needs (i.e.

high computation rates and low power consumption) and the
production cost. Certainly, this design methodology leads to
an efficient system. However, ever-changing in the application
requirements (for better resolution, less power consumption,
etc.) demands the re-design of the I/O data distribution archi-
tecture as well as the underlying processing hardware, leading
to the system obsolescence.

In this paper, we will focus on the challenge of developing
a generic model for pixel distribution dedicated to streaming
video applications. Indeed, there is a strong demand for such
efficient and flexible model to distribute the data onto parallel
hardware architectures to meet the real-time constraints. In the
case of HD frames with high processing rates, huge amount
of memory is required to store the input image stream. This
consumes a lot of power and restricts the parallel processing
level due to the limited memory bandwidth. According to the
global constraints, the efficient distribution of pixels leads to
well-balance between the I/O system performance and the pro-
cessing rate. High-level parameters should be defined to help
multimedia hardware designers to configure their architecture
and to implement easily this filed of applications in FPGAs. In
order to improve the productivity, FPGAs will be used in the
frame of an IP-based design methodology, advocating the All
IP paradigm, in order to favor the reuse when the requirements
change.

To address the above challenge, we propose a generic
hardware model to implement a flexible pixel distributor that
can be configured without modifying its internal structure. The
VHDL files of the pixel distributor can be easily generated
for different sizes of macro-block using a script file. The
distribution of pixels is set up by fixing the model parameters
of the architecture in order to produce macro-blocks respecting
the image processing algorithm and the parallelism level.
After setting the parameters, our pixel distributor can be
considered as an IP and used as an essential part of a parallel
architecture, thus it reduces significantly the design complexity
and increases the development productivity.

The rest of the paper is organized as follows. Section II
describes the state-of-the-art. Section III describes the video
processing system architecture. Section IV details the architec-
ture of our generic pixel distribution model. Next, in Section V
we show the results obtained using our architecture. Finally we
conclude with conclusion and future works in Section VI.

II. RELATED WORKS

Several benefits emphasize hardware designers to redirect
their efforts to reconfigurable computing for implementing
video-based multimedia applications. Indeed, FPGA technol-
ogy could offer better performances comparing to CPUs or

VTC_0

sensor

[
VITA image |
1
|

receiver

Image preprocessing pipeline

: Image Processing RGB to

> » ——>

| IPs YCbCr422 -
1

Fig. 1: Video processing system architecture

GPUs up to 10x [1] [5] [12] at lower frequencies. Further-
more, designers could exploit the parallelism intrinsic in the
application to adapt the architecture according to the timing
constraints and thus to optimize the hardware resources [2].
In such architecture, data I/O operations such as buffering
or distribution for parallel computing become critical aspects
while streaming frames with high rates. Several research works
have been devoted to design I/O systems dedicated to data
dominated applications in order to reduce the local memory
storage, the interconnection cost, or power consumption [9].
In the scope of this paper, we will focus on the hardware
realization of neighbourhood operations. Due to the large spec-
trum of image processing algorithms, the favourite solution
for designers is to customize the hardware implementation
on FPGAs. As an example, authors present in [8] an ef-
ficient cyclic image storage structure for direct calculation
of 2D neighbourhood operations by using dual port Block
RAM (BRAM) buffers. Their architecture optimizes the area
utilization comparing to the common solution that uses long
shift register pipelines. This technique is widely used due to
the large BRAMs available in the current FPGA generations.
However the main drawback of such solution is the lack of
design flexibility to be adapted according to the neighbourhood
operations. Today, multimedia application designers on FPGAs
need a generic model that can be configured according to the
application requirements with low complexity and hardware
cost.

To address the above challenge, authors in [7] present a
compile-time approach to reuse data in window-based codes
using the ROCCC (Riverside Optimizing Configurable Com-
puting Compiler) tool. The main objective is to exploit the
data reuse on the FPGA to minimize the required memory
or I/0O bandwidth while maximizing parallelism. However,
the generated HDL code with the compiler can’t achieve the
performances of a manually HDL code written by a hardware
engineer [7].

III. VIDEO PROCESSING SYSTEM ARCHITECTURE

The whole video processing chain depicted in Fig. 1
is implemented on Xilinx Zynq ZC706 FPGA evaluation
board [13]. The VITA-2000 image sensor [10] configured for
1080p60 resolution is connected to the FPGA board through
the Avnet IMAGEON FMC module [3]. The image sensor
captures one of the three color components of a pixel in raw
format (10-bit) then through the image preprocessing pipeline
the raw pixel is converted to the RGB format (24-bit).

clk

vblank [‘

e[| [1 [[[1
video

o OO0

active

Fig. 2: Video timing signals

The blocks of the image preprocessing pipeline are con-
nected to a processor through an AXI bus for initial con-
figurations (not mentioned in the figure for simplicity). The
first stage in the image preprocessing pipeline is the Defective
Pixel Correction (DPC) filter where the defective pixels are
removed. The captured pixel is then corrected by the Color
Filter Array (CFA) filter to restore the other two colors based
on the neighbouring pixels. Some other filters (gamma, noise,
edge enhancement,) can be added to improve the quality
of the input image. The Video Timing Controller (VTC) is
used at the input and the output side of the chain for detecting
and generating the required synchronization video signals. The
block named Image Processing IPs represents a set of parallel
IPs used to implement a certain image processing algorithm.
Through the RGB-to-YCbCr422 block, the pixel in the RGB
format is converted to the YCbCr 4:2:2 format then streamed
with correct video signals to the HD monitor according to the
HDMI specifications . In this work, we present how the input
stream of pixels can be distributed for parallel processing then
collected to be displayed on an HD monitor through the HDMI
port mounted on Zynq ZC706 evaluation board.

Figure 2 shows the video signals accompanied with the
input stream. The start of the frame is observed when the
vblank signal is high and the start of a line is noted when
the hblank signal is high while a valid pixel is presented when
the active_video signal is asserted to high.

IV. GENERIC PIXEL DISTRIBUTION MODEL

The main objective of this section is to introduce our
generic pixel distributor model. As stated before, our main
concern is to propose a pixel distribution architecture that
can deal with various input frames and macro-blocks sizes.
First, we will introduce the different model parameters of
the generic pixel distribution system. Second, the proposed
hardware architecture will be detailed and finally, we will
describe the finite state machines that control the architecture.

ik horizontal shift register
— ™ ok pixel< 1> .
k) >
ISt pixel<2 > >
ck rst st oyl
line buffers .
rst Fe e === | pixel< H> .
rd_clk R | ixel<1,.., H> . _
wr kTl line buffer 1 | e —E—r’@ ﬂ pixel< H+1 > >
gl
T | line buffer 2=~ ———m» = |j—— » D
, : DTE Lfefe——
. | .
wr_en_buff(i) | circular R . .
o vertical [Tt R g L E T —
wr_addr | B & .
—>| . | shifter pixel< 2*H+1 > o
rd_addr | : : o
. | . pixel< 2*H+2 > o
I . \ . 5 >
|
. | pixel< (V-1)*H+1,...., V¥H > .
RCTT SO .
I______________! pixel< 3*H > -
A
pixel< (V-1)*H+1 > o
pixel< (V-1)*H+2 > >
V+ + 4+ ver_shifting *
vblank - pixel< V‘.H> o
hblank controller sof ;@ sof .
act_video > valid =@ valid _
Pixel Distributor
Fig. 3: Pixel distributor structure
e A macro-block is the basic processing structure of
—_ frame_wid - length V and width H such that V > 1 and H > 1
[procd_ num_cols —)
— H — e A macro-block can move horizontally by a step =
T T hor_slide and vertically by a step = ver_slide such
. that 1< ver_slide <V and 1< hor_slide < H
Q
£ JL hor_slide
s El —> e procd_num_lines is the number of lines processed in
:| 2 one frame. If the procd_num_lines < frame_len then
g ‘g' Jid (frame_len - procd_num_lines) lines aren’t processed,
& g ver_sliae such that
JL NCT T TTTTITTTTTTT procd_num_lines =V + L’%J * ver_slide (1
J e procd_num_cols is the number of pixels processed
in one line. If the procd_num_cols < frame_wid
then (frame_wid - procd_num_cols) pixels aren’t pro-
cessed, such that
. . . rocd_num_cols = H + | e wid=H .\ por slide 2
Fig. 4: Pixel distribution model procd_nium_ + i -)
e N is the index of a line in the frame such that 1 < N
< procd_num_lines
A. Model Parameters
e Since each line is stored in a separate buffer, then V

The required parameters to understand the pixel distribution

model are described below and illustrated in Fig. 4:

A frame is of width frame_wid and length frame_len

buffers are needed. we define B as the buffer index of
a given line such that

B = (N mod V) 3)

waltlng for vblank 1

aframe

vblank =0

'/

active. wdeo

Start of hblank = 1
frame

active_video=1

active_videg,
=0

active_video

Writing
pixels

Non-padded
Pixels

bypassing
non-padded pixels

Fig. 5: The finite state machine for the writing process

B. System Architecture

The role of the pixel distributor is to write the input video
stream to the line buffers and then to distribute the pixels in the
form of macro-blocks according to the required size (H x V).
Figure 3 shows the interface and the internal block diagram
for the pixel distributor. The interface consists of (i) the input
ports for the video signals (vblank, hblank, act_video) and the
video_data, (ii) the output ports are equal to the number of
the pixels of the macro-block (H x V); in addition to that,
the signal sof comes with the first macro-block to designate
the start of the frame while the valid signal comes with every
macro-block to indicate the presence of a valid block at the
output ports.

The pixel distributor consists of the following internal
blocks: (i) the line buffers for storing the input pixels, (ii)
the circular vertical shifter for shifting the pixels circularly in
the vertical direction, while (iii) the horizontal shift register for
shifting the pixels horizontally, (iv) the controller for asserting
the required control signals according to the current state of the
system; for example, the controller asserts wr_en_buff signal
to enable writing in one of the line buffers at a specified
address wr_addr, while it loads rd_addr for read operations;
the controller assigns sof, valid and ver_shifting signals for
indicating the start of the frame, the presence of a valid macro-
block or for shifting the pixels vertically.

A column of pixels is passed to the circular vertical shifter
as soon as, its last pixel was written to the line buffers. The
horizontal shift register shifts each pixel horizontally so that
after hor_slide shifts for the first pixel of the macro-block (i.e.
pixel<1>), the valid signal is asserted to indicate the presence
of a macro-block at the output ports of the pixel distributor.

From equation 3, the line of index V+1 will be stored in
the first line buffer. If ver_slide < V, then the line V+1 will
have some order in the macro-block rather than being the first
line. In this case, the output of the line buffers are needed to
be shifted vertically in a circular way to put back the lines
of the macro-block in their correct order. Every V lines, the
signal ver_shifting is asserted ver_slide times.

waiting until the last pixel of
the first column is written

waiting for
aframe

start of

end of the

reading the first column
frame

waiting until the last pixel of from line buffers

the next first column is written

reading the first colum

from line buffers Reading
waiting for the macro-blocks

next first column

distributing
macro-blocks

Fig. 6: The finite state machine for the reading process

C. The Controller Finite State Machine

Figure 5 shows the finite state machine for the writing
process, (i) the system starts at the idle state waiting for an
input stream, (ii) during the vblank period, the system waits
in the start of frame state; then, (iii) it waits in the start of
line state while the signal hblank is active, (iv) the system
rests at the writing pixels state during the writing operation of
the pixels, (v) according to equation (2), if procd_num_cols <
frame_wid then the system will transit to non-padded pixels
state to bypass the rest of the pixels of the line, otherwise; it
will transit to the start of line state to process the next line or
to the start of frame state to process the next input frame.

Figure 6 shows the states for the reading process, (i) the
system starts at the idle state waiting for an input stream; then,
(ii) it waits in the state first column until the first column of the
macro-block is written to the line buffers, (iii) in the reading
macro-blocks state, the macro-blocks are sent to the circular
vertical shifter , as soon as they are written to the line buffers,
(iv) after that, the system will transit to the next first column
state waiting for the first column of the next set of macro-
blocks or it will transit to the idle state waiting for the new
input frame.

D. Generic Model

The process of writing/reading pixels to/from the line
buffers doesn’t depend either on the size of the macro-block
or on the size of the input frame. Only the number of line
buffers depend on the vertical size of the macro-block (V)
and the number of the output ports depend on the size of
the macro-block (H x V). Therefore, the VHDL files of the
pixel distributor can be easily generated for different sizes of
macro-block by modifying only the number of buffers in the
line buffers and the number of the output ports using a script
file.

E. Parallel Processing

The communication between the pixel distributor and the
processing IPs is done through the valid signal. The pixel dis-
tributor asserts the valid signal when a macro-block is available
at its output ports (i.e. the input ports of the IP). Figure 7

sof . | valid
Pixel valid | Demux :
g data
Distributor | | yata A

Fig. 7: Parallel structure

depicts the architecture for parallel processing, where a de-
mux is used to distribute the valid signal each time between
different parallel IPs. From the pixel distributor model, the
rate of producing macro-blocks is equal to macro-block rate
= 15” - in macro-block/cycle. If the computation delay of
an IP71s equal to computation_delay in clock cycles then the
required number of parallel IPs can be calculated from the

following equation:

Number of parallel IPs

=[macro-block rate x computation_delay|
. [computation_delay -‘
- hor_slide

“)

F. Pixel Collector

The size of the output frame can be equal to the input
frame as in the case of grayscale filter or less than it as in the
case of the video downscaler. Since the result is streamed on
HD1080 monitor; therefore, the pixel collector have to produce
frames respecting the same frame size (1920x1080). When the
output frame is smaller than the HD1080 frame size, the border
parameters of the pixel collector (left_border, right_border,
up_border, bottom_border) are configured to pad the frame to
HD1080 format.

G. Limitation

The distribution of pixels is executed within the boundaries
of the frame; therefore, for the neighborhood pixel applications
like median filter, the border pixels are not distributed since a
part of their macro-blocks lie outside the frame boundaries.
In such situation, we decided not to process these border
pixels since the percentage of the unprocessed pixels (i.e.
the error rate) is within the acceptable range. for example,
when the input frame size is 1920x1080, the percentage of the
unprocessed pixels is 0.29% for a macro-block of size=3x3,
0.58% for 5x5 and is 0.86% for 7x7.

V. EXPERIMENTAL RESULTS

Firstly, we will highlight the advantages of the automatic
code generation phase. Secondly, we will present the synthesis
results for the pixel distributor for different macro-block sizes
as well as for different frame sizes. Finally, we will illustrate
examples making profit from the proposed parallel structure
described in the previous section. Two application examples
are implemented: video downscaler (1:16) and convolution
filter.

A. Automatic Code Generation

We have developed a tool that takes the length H and
the width V of the macro-block as inputs to generate the
required VHDL code files for the pixel distributor. Using a
host machine equipped with Intel(R) Core i7 processor and a
16 GB RAM more than 700 lines were generated automatically
for a pixel distributor of macro-block size=4x4. This is a
significant result compared to the manual coding of the same
distribution design which can take hours of development; thus,
the design productivity increases. By using our model, when
the macro-block size or the sliding window step is changed;
the designer does not need to redesign of the pixel distributor
but few parameters can be modified in the tool and after few
seconds the required files are generated. The code generation
tool generates a set of files containing the description for
the circular vertical shifter, the horizontal shift register, the
line buffer as well as the top level module for the pixel
distributor. The tool helps the designer to obtain the required
files particularly when the number of code lines increases with
larger macro-block sizes. For instance, the code size grows
from more than 700 lines for macro-block=4x4 to more than
2000 lines for macro-block=16x16 as shown in Table I.

Generated files Description Number of code lines
4x4 8x8 16x16
pixel_distributor.vhd | The top level of the pixel distributor 500 | 670 1300
cir_ver_shifter.vhd The circular vertical shifter component 80 95 127
hor_shift_reg.vhd The horizontal shift register component 83 190 600
buff.vhd It constructs the line buffers component 60 60 60
TABLE I: Generated VHDL code files for the pixel
distributor

B. Pixel Distributor Synthesis Results

Table II shows the synthesis results for the pixel distributor
over the Zynq XC7Z045-FFG900 evaluation board. The pixel
distributor was synthesized for the following model parameters
(macro-block size=4x4, hor_slide=1 and ver_slide=1) with
different frame sizes (HD1080, HD720, SVGA and VGA).
The results show that the size of the controller in terms of slice
register and slice LUT differs according to the frame size. This
occurs because the size of the internal counters used by the
controller during the read/write process depends on the size
of the input frame. While for the other components, they are
almost occupying the same area because their size depends
only on the macro-block size which was fixed to 4x4 during
this experiment.

Table III shows the synthesis results for the pixel distributor
for fixed frame size (HD1080) with hor_slide=1, ver_slide=1
and different sizes of macro-block (1x3, 2x2, 3x1, 4x4,....).
From the results, we can notice that the circular vertical shifter
has almost the same area while the V parameter is fixed for
macro-block of sizes 4x4, 5x4 and 6x4 as shown in Table III.
For the horizontal shift register, it has the same area for
distributors of the same number of output pixels as shown
in the case of 3x1 and 1x3 or in the case of 4x6, 6x4 and
3x8. Based on the synthesis results, the maximum operating
frequency for the pixel distributor is higher than the required
one for HD1080 processed at 60 frame/sec (i.e. 148.5 MHz).

ﬁ Video
— Scaling ﬂ:
SOF b : o e SOF
ﬁ emux SOF Mux valid
vblank SOF Video 4’—|d> data
hblank Pixel |11 Valid) val
act_video | . . . (data0 Scaling _,leﬂ->
data[23:16] Distributor_R i o axa
— | data15 r
SOF "
J—-' Video
valid
. SOF
SOF g Scaling valid SOF vblank ,
Demux - 4x4 L data)] hblank
valid o Mux valid ,f Pixel [act video ,
vblank SOF - 4,—> data,| Collector | data[23:0]
___hblank ,J Pixel 1 1 1Naia?] Video valid
act_video | —daial Scaling _,_d'ﬁa"—‘
datal15:8] Distributor_G H g
E— | data 15 r 4x4
,—’vasfi)dF Vidfeo 1 sor |
soF : Scaling ["valid
’—> Demux : axa | |_data)] SOF
i valid
vblank valid j SOF | Video ﬁ Mux data
hblank i valid !
—actvideo Dist:kl))ijetlor B J.a:.aj_| 4’ Scaling P
data[7:0] - dat; 15 HEN ax4
Fig. 8: Parallel architecture for the video downscaler
1920x1080 1280x720 800x600 640x480 L .
e ol o= el w2 ol o = =1 application was realized over the Zynq XC7Z045-FFG900
€ | 3|32 | 3|5|«|=2|5|# |23 |5| platform according to the video processing system architecture
Zl 2|2 £ 2|2/ &2 2| £| 2% 2| showninFig I Figure 8 shows in details the structure of
w) wn w) wn . .
Cireuiar the Image Processing IPs block. The video downscaler has
vertical shifter | 2 | 30 | 0| 2 |3 |0} 2 36 101 2) 34 0] g geparate processing channel for each color component
i‘:{t‘zr"e';‘fs‘:er 130 | 0 o130 o |o|10| o |o|mo| o|o| (red, green and blue). The data distributor was configured
Controller 95 |13 |0 92 |14 0] 8 | 1590 84 163 0] Wwith the following model parameters (macro-block size=4x4,
?'t‘elb“““s 237 289 j 234 283 3 2(1’9 185 j 2‘1’6 137 3 hor_slide=4 and ver_slide=4). The computation delay for
otai
Freq(MHz) 26853 267.95 266.17 269.40 the VideoScaling_4x4 1P is 8 clock cycles. By applying

TABLE II: Synthesis results for pixel distributor for model
parameters (macro-block=4x4 with hor_slide=1 and
ver_slide=1) with different frame sizes

Circular | Horizontal .
Macro-block | 0o a1 shift Controller | 1M Total Freq
size (Hx V) . . buffers (MHz)
shifter register
¥ 5| | S |2/ 5| 2 |¢|5 |3
| R |2 | 3 || R s % | 2 | &
@ @ @ @ @ @ < @ @ <
= = = = 2 = &] S |~
7] 7] 7] @ 7] 7] = @ wn | A
1x3 2 29 26 0 83 145 3 111 | 174 | 3 [289.27
2x2 1 9 34 0 94 | 170 2 129 | 179 | 2 | 269.98
3x1 0 0 26 0 92 176 1 118 176 1 269.98
3x8 3 [134] 194 0 88 170 8 285 | 304 | 8 | 259.87
4x4 2 36 | 130 0 95 | 173 4 227 | 209 | 4 | 268.53
4x6 3 107 194 0 95 178 6 292 | 285 6 267.59
5x4 2 35 162 0 95 183 4 259 [218 | 4 | 257.69
5x7 3 | 144 | 282 0 94 | 183 7 379 | 327 | 7 | 24492
6x4 2 36 194 0 95 175 4 291 211 4 268.53

TABLE III: Synthesis results for pixel distributor for
HD1080 frame, hor_slide=1, ver_slide=1 and different
macro-block sizes

C. Video Downscaler (1:16)

The video downscaler scales the HDI1080 frame
(1920x1080) to one sixteenth of its size (480x270). The

equation 4, we can deduce that the required number of
parallel IPs is 2; thus, we had two VideoScaling_4x4 1Ps
working simultaneously for each processing channel. The
Demux component is used to branch the control signals
(valid and sof) over the IPs for parallel processing. While
the Mux component is used to gather the processed data and
control signals from the parallel IPs to send them to the pixel
collector. In the pixel collector, the coming pixels are stored
in order and when there are enough pixels in the buffer, it
starts streaming the video frame with corresponding video
signals (vblank, hblank and active_video) to the HDMI output
port. The output frame can be placed in the middle of the
screen by setting the border parameters of the pixel collector
to (left_border=720, right_border=720, up_border=405,
bottom_border=405).

Table IV shows the synthesis results for the video down-
scaler. The video downscaler occupies 4.8% and 9.3% of
the total available resources for slice register and slice LUT
respectively. The parallel processing channels consume nearly
9.7% of the total slice register used and 8.6% of that used
for slice LUT. The pixel distributor utilizes around 3.2% of
the total design area for both slice register and slice LUT;
thus, it represents a low hardware design cost. For the BRAM
utilization, the video downscaler shows around 22% of the
total available BRAM on the board since the collector keeps
the pixels for one scaled frame (480x270) before starting the

valid

Demux
SOF

vblank

hblank

Pixel

act_video

Distributor_R

data[23:16]
e

SOF
valldk Conv m
I 3 [— | valid)]
SOF SOF
|1 valid,] Conv | ,—"’a“d
3x3 I
SOF
valid Conv M
> valid |_vblank
— 5 33 | data, SOF hblank
M valid Pixel act_video
ux :
U f_sor ﬁ datay| Collector | datal23:0],
- alid) conv [[data)]
3x3 _I
SOF.
,ﬂ- Conv SOF
HIN 3x3 1
| SOF
—1 SOF valid
valid Conv f
3x3 _I
22

Ll

Fig. 9: The red color processing channel for convolution filter

o0 = o -4 —;
9 =) - [z =
~ = = = %
£ 2 2] 2|8
@ @n /m /m a
Video processing system architecture
Video timing controller 0 1209 1230 0 0 0
:gg\&lelrmage sensor 5041 | 6331 0 13
Image preprocessing 10565 | 9733 | 19 10 9
pipeline
RGB-to-YCbCr422 254 202 0 0 4
Video timing controller 1 1093 1114 0 0 0
Total 19062 | 18610 19 23 17
Video downscaler
Pixel distributor (R,G,B) 669 639 12 0 0
Demux (R,G,B) 3 9 0 0 0
Video scaling (R,G,B) 1140 756 0 0 0
Mux (R,G,B) 90 42 0 0 0
Pixel collector (R,G,B) 154 307 0 96 0
Total 2056 1753 12 96 0
Total application area 21118 20363 31 119 17
Resource utilization (%) 4.83 9.32 2.8 22 1.89
Convolution filter
Pixel distributor (R,G,B) 507 630 9 0 0
Demux (R,G,B) 9 27 0 0 0
Conv. filter (R,G,B) 4410 2844 0 0 0
Mux (R,G,B) 210 99 0 0 0
Pixel collector (R,G,B) 132 325 0 72 0
Total 5268 3925 9 72 0
Total application area 24330 | 22535 28 95 17
Resource utilization (%) 5.56 10.31 2.57 17.61

TABLE IV: Synthesis results for the video downscaler (1:16)
and convolution filter

output stream.

D. Convolution Filter

Based on the same video processing architecture shown in
Fig. 1, a convolution filter [6] with kernel [-1, -1, -1, -1, 9, -1, -
1, -1, -1] is applied to the HD1080 input frame captured by the
VITA image sensor. In this application, a processing channel
is dedicated for each color component. Figure 9 shows the
processing channel for the red color component and similarly

it will be for the green and blue colors. The input stream
is distributed by the pixel distributor in the form of macro-
blocks of size=3x3 with hor_slide=1 and ver_slide=1. The
computation delay for the Conv_3x3 IP is 6 clock cycles
so by using equation 4, the required number of Conv_3x3
IPs for each channel is 6 IPs running at the same time to
process the distributed macro-blocks. The Demux and Mux
components are used for branching and gathering the data and
the control signals through the parallel architecture. Due to the
limitation described in subsection IV-G, the border pixels are
not processed so the pixel collector produces the output frame
with a contour of black pixels. The border parameters of the
pixel collector were set to the following values (left_border=1,
right_border=1, up_border=1, bottom_border=1).

As shown in Table IV, the convolution filter has 5.5% of
the total available slice register and 10.3% of that available for
slice LUT. The parallel processing channels occupies 21.7%
and 17.4% of the total design utilization for slice register
and slice LUT. This percentage rises due to the presence of
6 parallel Conv_3x3 IP working at the same time for each
processing color channel. The pixel distributor shows less than
3% for both resources which proves the low hardware cost of
our solution. For the BRAM utilization, the collector starts
streaming at the time it receives the first processed macro-
block; however, the frame starts with a vblank period and
consequently the pixels have to be stored during that period.
For this reason, the convolution filter takes around 17.6% of
the total available BRAM resources.

VI. CONCLUSION

For multimedia video processing domain, reconfigurable
fabric (FPGA) is a promising technology that offers high
integration density, real-time processing and low power design.
Furthermore, it provides an efficient execution support by
exploiting the spatial and temporal parallelism inherent from
the application functionality. In this paper, we leverage the I/O
system design to provide a generic model for pixel distribution

dedicated for streaming video applications with low hardware
cost (around 3% of the total design area for both video
downscaler and the convolution filter). The pixel distributor
has a flexible model; we can obtain the required VHDL files
by setting the size of the macro-block in the code generation
tool without spending more redesign efforts.

As a future work, first we will focus on the design
of massively parallel reconfigurable architectures that make
profit from our generic I/O system to support SPMD (Single
Program Multiple Data) execution model. Second, we plan to
reconfigure the I/O system at runtime according to the active
processing elements relying on the partial reconfiguration
feature offered by recent FPGA generation.

REFERENCES

[11 S. Asano, T. Maruyama, and Y. Yamaguchi. Performance Comparison
of FPGA, GPU AND CPU in Image Processing. In /9th IEEE Inter-
national Conference on Field Programmable Logic and Applications,
FPL, Prague, Czech Republic, Aug. 2009.

[2] W. Atabany and P. Degenaar. Parallelism to reduce power consumption
on fpga spatiotemporal image processing. In [IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1476-1479. IEEE,
2008.

[31 Avent. FMC-IMAGEON EDK Reference Design Tutorial.

[4] M. Baklouti, Y. Aydi, P. Marquet, J.-L. Dekeyser, and M. Abid. Scalable
mpNoC for massively parallel systems - Design and implementation on
FPGA. Journal of Systems Architecture, 56(7):278 — 292, 2010. Special
Issue on HW/SW Co-Design: Systems and Networks on Chip.

[5] 1. Fowers, G. Brown, P. Cooke, and G. Stitt. A performance and energy
comparison of fpgas, gpus, and multicores for sliding-window applica-
tions. In Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’12, pages 47-56, New York,
NY, USA, 2012. ACM.

[6] R. Gonzalez and R. Woods. Digital Image Processing. Pearson
Education, 2011.

[71 Z. Guo, B. Buyukkurt, and W. Najjar. Input data reuse in compiling
window operations onto reconfigurable hardware. In Proceedings of the
2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, LCTES ’04, pages 249-256, New
York, NY, USA, 2004. ACM.

[8] M. Holzer, F. Schumacher, 1. Flores, T. Greiner, and W. Rosenstiel.
A real time video processing framework for hardware realization
of neighborhood operations with fpgas. In Radioelektronika (RA-
DIOELEKTRONIKA), 2011 21st International Conference, pages 1-4,
April 2011.

[9] N. Lawal and M. ONils. Embedded FPGA memory requirements for
real-time video processing applications. In 23rd NORCHIP Conference,
Oulu, Finland, Nov. 2005.

[10] ON semiconductor. VITA 2000 2.3 Megapixel 92 FPS Global Shutter
CMOS Image Sensor.

[11] S. Qasim, S. Abbasi, and B. Almashary. An overview of advanced fpga
architectures for optimized hardware realization of computation inten-
sive algorithms. In Multimedia, Signal Processing and Communication
Technologies, 2009. IMPACT ’09. International, pages 300-303, March
2009.

[12] T. Saegusa, T. Maruyama, and Y. Yamaguchi. How fast is an fpga
in image processing? In Field Programmable Logic and Applications,
2008. FPL 2008. International Conference on, pages 77-82, Sept 2008.

[13] Xilinx. ZC706 Evaluation Board for the Zyng-7000 XC7Z045 All
Programmable SoC User Guide.

