. Also, note that for all i, ?(u, v, x i , y i ) = d(x i , y i )/2 and so, we have that for every i: d(x i , y i ) ? 2?

. Proof, We proceed by contradiction Let us assume that one of the graphs of Figure 1 is an isometric subgraph of G. For each of the forbidden graphs of Condition 5, we will only consider the 4-tuple of vertices that are drawn in bold in Figure 1

H. Bandelt and H. M. Mulder, Distance-hereditary graphs, Journal of Combinatorial Theory, Series B, vol.41, issue.2, pp.182-208, 1986.
DOI : 10.1016/0095-8956(86)90043-2

J. Baras, Hyperbolic embedding to the rescue in communication and social networks, Bell Labs- NIST Workshop on Large-Scale Networks, 2013.

S. Bermudo, J. M. Rodríguez, J. M. Sigarreta, and J. Vilaire, Gromov hyperbolic graphs, Discrete Mathematics, vol.313, issue.15, pp.313-1575, 2013.
DOI : 10.1016/j.disc.2013.04.009

M. Boguñá, F. Papadopoulos, and D. V. Krioukov, Sustaining the Internet with hyperbolic mapping, Nature Communications, vol.16, issue.6, pp.1-18, 2010.
DOI : 10.1038/ncomms1063

W. Carballosa, J. M. Rodríguez, J. M. Sigarreta, and M. Villeta, Gromov hyperbolicity of line graphs, The Electronic Journal of Combinatorics, vol.18, pp.1-18, 2011.

J. Chalopin, V. Chepoi, P. Papasoglu, and T. Pecatte, Cop and Robber Game and Hyperbolicity, SIAM Journal on Discrete Mathematics, vol.28, issue.4, 2013.
DOI : 10.1137/130941328

URL : https://hal.archives-ouvertes.fr/hal-01198887

V. Chepoi and F. Dragan, A Note on Distance Approximating Trees in Graphs, European Journal of Combinatorics, vol.21, issue.6, pp.761-766, 2000.
DOI : 10.1006/eujc.1999.0381

N. Cohen, D. Coudert, and A. Lancin, Exact and approximate algorithms for computing the hyperbolicity of large-scale graphs, Rapport de recherche RR-8074, Inria, 2012.

D. Coppersmith, Rectangular Matrix Multiplication Revisited, Journal of Complexity, vol.13, issue.1, pp.42-49, 1997.
DOI : 10.1006/jcom.1997.0438

URL : http://doi.org/10.1006/jcom.1997.0438

D. Dor, S. Halperin, and U. Zwick, All-Pairs Almost Shortest Paths, SIAM Journal on Computing, vol.29, issue.5, pp.1740-1759, 2000.
DOI : 10.1137/S0097539797327908

F. F. Dragan, Tree-Like Structures in Graphs: A Metric Point of View, 39th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp.1-4, 2013.
DOI : 10.1007/978-3-642-45043-3_1

F. F. Dragan and E. Köhler, An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs, Algorithms and Techniques Lecture Notes in Computer Science, vol.7, pp.171-183, 2011.
DOI : 10.1016/0196-6774(86)90023-4

R. Duan, Approximation Algorithms for the Gromov Hyperbolicity of Discrete Metric Spaces, 11th Latin American Theoretical Informatics Symposium (LATIN), pp.285-293, 2014.
DOI : 10.1007/978-3-642-54423-1_25

D. Eppstein, Subgraph isomorphism in planar graphs and related problems, 6th annual ACM- SIAM symposium on Discrete Algorithms (SODA), pp.632-640, 1995.

H. Fournier, A. Ismail, and A. Vigneron, Computing the Gromov hyperbolicity of a discrete metric space, Information Processing Letters, vol.115, issue.6-8, 2012.
DOI : 10.1016/j.ipl.2015.02.002

C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, Distance labeling in graphs, 12th annual ACM-SIAM symposium on Discrete algorithms (SODA), pp.210-219, 2001.
DOI : 10.1016/j.jalgor.2004.05.002

URL : https://hal.archives-ouvertes.fr/hal-00307381

M. Gromov and S. M. Gersten, Hyperbolic Groups, Essays in Group Theory, of Mathematical Sciences Research Institute Publications, pp.75-263, 1987.
DOI : 10.1007/978-1-4613-9586-7_3

E. Howorka, On metric properties of certain clique graphs, Journal of Combinatorial Theory, Series B, vol.27, issue.1, pp.67-74, 1979.
DOI : 10.1016/0095-8956(79)90069-8

X. Huang and V. Y. Pan, Fast Rectangular Matrix Multiplication and Applications, Journal of Complexity, vol.14, issue.2, pp.257-299, 1998.
DOI : 10.1006/jcom.1998.0476

URL : http://doi.org/10.1006/jcom.1998.0476

S. Huss-lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turnbull, Implementation of Strassen's algorithm for matrix multiplication, Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM) , Supercomputing '96, pp.32-32, 1996.
DOI : 10.1145/369028.369096

A. Edmond, P. Jonckheere, and . Lohsoonthorn, A hyperbolic geometric approach to multipath routing, Proc. 10th Mediterranean Conference on Control and Automation, 2002.

P. A. Knight, Fast rectangular matrix multiplication and QR decomposition, Linear algebra and its applications, pp.69-81, 1995.
DOI : 10.1016/0024-3795(93)00230-w

URL : http://doi.org/10.1016/0024-3795(93)00230-w

A. Kosowski, B. Li, N. Nisse, and K. Suchan, k-chordal graphs: From cops and robber to compact routing via treewidth, International Conference on Automata, Languages, and Programming (ICALP), pp.2012-610
URL : https://hal.archives-ouvertes.fr/hal-00687120

R. Laskar and D. Shier, On powers and centers of chordal graphs, Discrete Applied Mathematics, vol.6, issue.2, pp.139-147, 1983.
DOI : 10.1016/0166-218X(83)90068-9

L. François and . Gall, Faster algorithms for rectangular matrix multiplication, IEEE 53rd Annual Symposium on Foundations of Computer Science, pp.514-523

D. Lokshtanov, Finding the longest isometric cycle in a graph, Discrete Applied Mathematics, vol.157, issue.12, pp.2670-2674, 2009.
DOI : 10.1016/j.dam.2008.08.008

J. Michel, J. M. Rodríguez, J. M. Sigarreta, and M. Villeta, Hyperbolicity and parameters of graphs, Ars Combinatoria, vol.100, pp.43-63, 2011.

L. Roditty and V. Williams, Minimum Weight Cycles and Triangles: Equivalences and Algorithms, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp.180-189, 2011.
DOI : 10.1109/FOCS.2011.27

URL : http://arxiv.org/abs/1104.2882

J. M. Rodríguez and J. M. Sigarreta, Bounds on Gromov hyperbolicity constant in graphs, Proceedings Indian Acad. Sci. (Mathematical Sciences), pp.53-65, 2012.
DOI : 10.1007/s12044-012-0060-0

R. Seidel, On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs, Journal of Computer and System Sciences, vol.51, issue.3, pp.400-403, 1995.
DOI : 10.1006/jcss.1995.1078

J. P. Spinrad, Finding large holes, Information Processing Letters, vol.39, issue.4, pp.227-229, 1991.
DOI : 10.1016/0020-0190(91)90184-J

V. and V. Williams, Multiplying matrices faster than coppersmith-winograd, Proceedings of the 44th symposium on Theory of Computing, STOC '12, pp.887-898, 2012.
DOI : 10.1145/2213977.2214056

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.297.2680

V. , V. Williams, and R. Williams, Subcubic Equivalences between Path, Matrix and Triangle Problems, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp.645-654, 2010.
DOI : 10.1109/FOCS.2010.67

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.182.3568

Y. Wu and C. Zhang, Hyperbolicity and chordality of a graph, The Electronic Journal of Combinatorics, vol.18, p.43, 2011.

R. Yuster and U. Zwick, Fast sparse matrix multiplication, ACM Transactions on Algorithms, vol.1, issue.1, pp.2-13, 2005.
DOI : 10.1145/1077464.1077466

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2485