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Abstract.
We present a new derivation of the classical action underlying a large deviation

principle (LDP) for a stochastic hybrid system, which couples a piecewise
deterministic dynamical system in Rd with a time-homogeneous Markov chain on
some discrete space Γ. We assume that the Markov chain on Γ is ergodic, and that
the discrete dynamics is much faster than the piecewise deterministic dynamics
(separation of time-scales). Using the Perron-Frobenius theorem and the calculus-
of-variations, we show that the resulting action Hamiltonian is given by the Perron
eigenvalue of a |Γ|-dimensional linear equation. The corresponding linear operator
depends on the transition rates of the Markov chain and the nonlinear functions of
the piecewise deterministic system. We compare the Hamiltonian to one derived
using WKB methods, and show that the latter is a reduction of the former. We
also indicate how the analysis can be extended to a multi-scale stochastic process,
in which the continuous dynamics is described by a piecewise stochastic differential
equations (SDE). Finally, we illustrate the theory by considering applications to
conductance-based models of membrane voltage fluctuations in the presence of
stochastic ion channels.
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1. Introduction

There are a growing number of problems in biology that involve the coupling between
a piecewise deterministic dynamical system in Rd and a time-homogeneous Markov
chain on some discrete space Γ [4], resulting in a type of stochastic hybrid system
(SHS) known as a piecewise deterministic Markov process (PDMP) [10]‡. One
important example at the single-cell level is the occurrence of membrane voltage
fluctuations in neurons due to the stochastic opening and closing of ion channels
[16, 9, 22, 19, 8, 37, 42, 33, 5, 35, 1]. Here the discrete states of the ion channels evolve
according to a continuous-time Markov process with voltage-dependent transition
rates and, in-between discrete jumps in the ion channel states, the membrane voltage
evolves according to a deterministic equation that depends on the current state of the
ion channels. In the limit that the number of ion channels goes to infinity, one can
apply the law of large numbers and recover classical Hodgkin-Huxley type equations.
However, finite-size effects can result in the noise-induced spontaneous firing of a
neuron due to channel fluctuations. Another major example is a gene regulatory
network, where the continuous variable is the concentration of a protein product and
the discrete variable represents the activation state of the gene [23, 2, 30, 34, 36].
A third example concerns a stochastic formulation of synaptically-coupled neural
networks that has a mathematical structure analogous to gene networks [3, 4].

In many of the above examples, one finds that the transition rates between the
discrete states n ∈ Γ are much faster than the relaxation rates of the piecewise
deterministic dynamics for x ∈ Rd. Thus there is a separation of time scales between
the discrete and continuous processes, so that if t is the characteristic time-scale
of the relaxation dynamics then t/ε is the characteristic time-scale of the Markov
chain for some small positive parameter ε. Assuming that the Markov chain is
ergodic, in the limit ε→ 0 one obtains a deterministic dynamical system in which one
averages the piecewise dynamics with respect to the corresponding unique stationary
measure. This then raises the important problem of characterizing how the law of the
underlying stochastic process approaches this deterministic limit in the case of weak
noise, 0 < ε� 1.

A rigorous mathematical approach to addressing the above issue is large deviation
theory, which has been developed extensively within the context of stochastic
differential equations (SDEs) [17, 11, 40]. In particular, consider some random
dynamical system in Rd for which there exists a well defined probability density
functional or law Pε[x] over the different sample trajectories {x(t)}T0 in a given time
interval [0, T ]. Here ε is a small parameter that characterizes the noise level, with
x(t) given by the solution x∗(t) of some ODE ẋ = F (x) in the limit ε → 0. A large
deviation principle (LDP) for the random paths of the SDE over some time interval
[0, T ] is

Pε[x] ∼ e−JT [x]/ε, ε→ 0,

where JT [x] is known as the rate function and JT [x∗] = 0. In the case of SDEs, the
rate function can be interpreted as a classical action with corresponding Lagrangian

‡ In this paper we use the term SHS mainly within the restricted sense of a PDMP. However, we
do briefly consider a more general class of SHS in section 3, in which the piecewise deterministic
continuous process is replaced by a piecewise stochastic continuous process.
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L [17],

JT [x] =

∫ T

0

L(x, ẋ)dt.

Such a Lagrangian formulation is more amenable to explicit calculations. In particular,
it can be used to solve various first passage time problems associated with the escape
from a fixed point attractor of the underlying deterministic system in the weak noise
limit. This involves finding the most probable paths of escape, which minimize the
action with respect to the set of all trajectories emanating from the fixed point.
Evaluating the action along a most probable path from the fixed point to another
point x generates a corresponding quasipotential Φ(x). From classical variational
analysis, it can be shown that the quasipotential satisfies a Hamilton-Jacobi equation
H(x, ∂xΦ) = 0, where H is the Hamiltonian obtained from L [17] via a Fenchel-
Legendre transformation:

H(x, p) = sup
y
{py − L(x, y)}.

The optimal paths of escape correspond to solutions of Hamilton’s equations on the
zero energy surface (H = 0). This is a consequence of the fact that the paths of escape
are constant energy solutions that converge to a stable fixed point of the underlying
deterministic system in the limit t → −∞, and the Hamiltonian is zero at fixed
points. Interestingly, the same Hamilton-Jacobi equation is obtained by considering
a Wentzel-Kramers-Brillouin (WKB) approximation of the stationary state of the
continuous process x(t) in the weak-noise limit [27, 28, 39]. Analogous connections
between large deviation theory and WKB methods have also been established for
continuous-time Markov chains [21, 26, 12, 41].

More recently, rigorous large deviation theory has been applied to PDMPs
[14, 13, 24]. Independently of these developments in large deviation theory, a variety of
techniques in applied mathematics and mathematical physics have been used to solve
first passage time problems in biological applications of stochastic hybrid systems.
These include WKB approximations and matched asymptotics [22, 32, 30, 33, 5], and
path-integrals [4, 6]. Although such approaches are less rigorous than large deviation
theory, they are more amenable to explicit calculations. In particular, they allow one
to calculate the prefactor in Arrhenius-like expressions for mean first passage times,
rather than just the leading order exponential behavior governed by the quasipotential.
A major aim of this paper is to make explicit the connection between large deviation
theory and more applied approaches to stochastic hybrid systems, by highlighting
the common underlying Hamiltonian structure. Consistent with this aim, we present
a new derivation of the classical action arising from an LDP for stochastic hybrid
systems. We take as our starting point the LDP due to Faggionato et al. [14, 13].
Using the Perron-Frobenius theorem and the calculus-of-variations, we evaluate the
LDP rate function in terms of the classical action, whose equations of motion along
the most probable paths of escape are given by a Hamiltonian dynamical system. We
show that one major difference between hybrid and non-hybrid stochastic processes
is that in the former case the WKB Hamiltonian tends to be a reduced version of the
LDP Hamiltonian. However, the corresponding Hamiltonian dynamical systems yield
the same most probable paths of escape.

The structure of the paper is as follows. In section 2 we define a stochastic
hybrid system corresponding to a one-dimensional PDMP, and specify our various
mathematical assumptions. We then present our detailed derivation of the classical
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LDP action in section 3 (theorem 3.1 and its proof). Although we focus on a one-
dimensional PDMP, we also indicate how to extend our results to higher-dimensional
PDMPs and multi-scale processes. The relationship between the classical action of
large deviation theory and the quasipotential of WKB theory is developed in section
4. In particular, we show how the WKB quasipotential satisfies a Hamilton-Jacobi
equation, whose associated Hamiltonian is consistent with the Hamiltonian obtained
from the classical LDP action. This result is consistent with alternative formulations
based either on more abstract probability theory [24] or formal path-integral methods
[4, 6]. Finally, we illustrate our analysis of LDPs for stochastic hybrid systems by
considering some conductance-based models of membrane voltage fluctuations in the
presence of stochastic ion channels (section 5).

2. Stochastic hybrid systems

Consider a one-dimensional SHS corresponding to a PDMP with continuous variable
x ∈ Ω ⊂ R and a discrete variable n ∈ Γ ≡ {0, · · · , N} [10, 24]. (Note that one
could extend the analysis to higher-dimensions, x ∈ Rd. In this case Ω is taken to
be a connected, bounded domain with a regular boundary ∂Ω, see section 3.4. It is
also possible to have more than one discrete variable, but one can always relabel the
discrete states so that they are effectively indexed by a single integer.) When the
internal state is n, the system evolves according to the ordinary differential equation
(ODE)

ẋ = Fn(x), (2.1)

where the vector field Fn : Ω→ R is a continuous function, locally Lipschitz. That is,
for any compact subset K of Ω, there exists a positive constant Kn such that

|Fn(x)− Fn(y)| ≤ Kn|x− y|, ∀x, y ∈ K. (2.2)

We assume that the dynamics of x is confined to the domain Ω so that we have
existence and uniqueness of a trajectory for each n. One final mild constraint is that
the vector field does not have identical components anywhere in Ω, that is, for any
x ∈ Ω, there exists at least one pair (n,m) ∈ Γ× Γ, n 6= m for which Fm(x) 6= Fn(x).
For fixed x, the discrete stochastic variable evolves according to a homogeneous,
continuous-time Markov chain with transition matrix W(x). We make the further
assumption that the chain is irreducible for all x ∈ Ω, that is, for fixed x there is a
non-zero probability of transitioning, possibly in more than one step, from any state to
any other state of the Markov chain. This implies the existence of a unique invariant
probability distribution on Γ for fixed x ∈ Ω, denoted by ρ(x, n), such that∑

n∈Γ

ρ(x, n)Wnm(x) = ρ(x,m), ∀m ∈ Γ, ∀x ∈ Ω. (2.3)

The existence of the unique invariant measure is a consequence of the well known
Perron-Frobenius Theorem§.

The above stochastic model defines a one-dimensional PDMP. It is also possible to
consider generalizations of the continuous process, in which the ODE (2.1) is replaced
by a stochastic differential equation (SDE), see section 3.5, or even a partial differential
equation (PDE). In order to allow for such possibilities we will refer to all of these
processes as examples of a stochastic hybrid system.

§ A finite-dimensional, real square matrix with positive entries has a unique largest real eigenvalue
(the Perron eigenvalue) and the corresponding eigenvector has strictly positive components [20].
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Let us decompose the transition matrix of the Markov chain as

Wnm(x) = Pnm(x)λn(x),

with
∑
m,m 6=n Pnm(x) = 1 for all x. That is, for a given x, the jump times from

state n are exponentially distributed with rate λn(x) and Pnm(x) is the probability
distribution that when a jump occurs the new state is m for some m 6= n. The hybrid
evolution of the system with respect to x(t) and n(t) is then described as follows.
Suppose the system starts at time zero in the state (x0, n0). Call x0(t) the solution
of (2.1) with n = n0 such that x0(0) = x0. Let θ1 be the random variable such that

P(θ1 < t) = 1− exp

(
−
∫ t

0

λn0
(x0(t′))dt′

)
.

Then in the random time interval s ∈ [0, θ1) the state of the system is (x0(s), n0). We
draw a value of θ1 from P(θ1 < t), choose an internal state n1 ∈ Γ with probability
Pn1n0

(x0(θ1)), and call x1(t) the solution of the following Cauchy problem on [θ1,∞):{
ẋ1(t) = Fn1

(x1(t)), t ≥ θ1

x1(θ1) = x0(θ1).

Iterating this procedure, we construct a sequence of increasing jumping times (θk)k≥0

(setting θ0 = 0) and a corresponding sequence of internal states (nk)k≥0. The evolution
(x(t), n(t)) is then defined as

(x(t), n(t)) = (xk(t), nk) if θk ≤ t < θk+1. (2.4)

Note that the path x(t) is continuous and piecewise C1.
Given the above iterative definition of the stochastic hybrid process, let X(t) and

N(t) denote the stochastic continuous and discrete variables, respectively, at time t,
t > 0, given the initial conditions X(0) = x0, N(0) = n0. Although the evolution of
the continuous variable X(t) or the discrete variable N(t) is non-Markovian, it can be
proven that the joint evolution (X(t), N(t)) is a strong Markov process [10]. Introduce
the probability density ρ(x, n, t|x0, n0, 0) with

P{X(t) ∈ (x, x+ dx), N(t) = n|x0, n0) = ρ(x, n, t|x0, n0, 0)dx.

It follows that ρ evolves according to the forward differential Chapman-Kolmogorov
(CK) equation [18, 4]

∂ρ

∂t
= −Lρ, (2.5)

with the adjoint generator −L (dropping the explicit dependence on initial conditions)
defined according to

Lρ(x, n, t) =
∂Fn(x)ρ(x, n, t)

∂x
− 1

ε

∑
m∈Γ

A>nm(x)ρ(x,m, t), (2.6)

with

Anm(x) = Wnm(x)− δn,m
∑
k∈Γ

Wnk(x), (2.7)

such that
∑
m∈ΓAnm(x) = 0 ∀n ∈ Γ and ∀x ∈ Ω, and

∑
n∈Γ ρ(x, n)Anm(x) = 0.

The first term on the right-hand side of equation (2.6) represents the probability flow
associated with the piecewise deterministic dynamics for a given n, whereas the second
term represents jumps in the discrete state. Note that we have rescaled the transition
matrix W (and hence A) by introducing the dimensionless parameter ε, ε > 0. This is
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motivated by the observation that in many biological applications there a separation
of time-scales between the relaxation time for the dynamics of the continuous variable
x and the rate of switching between the different discrete states n [4].

Let us now define the averaged vector field F : R→ R by

F (x) =
∑
n∈Γ

ρ(x, n)Fn(x).

It can be shown [14] that, given the assumptions on the matrix W, the functions
ρ(x, n) on Ω belong to C1(R) for all n ∈ Γ and that this implies that F (x) is locally
Lipschitz. Hence, for all t ∈ [0, T ], the Cauchy problem{

ẋ(t) = F (x(t))
x(0) = x0

(2.8)

has a unique solution. Intuitively speaking, one would expect the stochastic hybrid
system (2.1) to reduce to the deterministic dynamical system (2.8) in the limit ε→ 0.
That is, for sufficiently small ε, the Markov chain undergoes many jumps over a small
time interval ∆t during which ∆x ≈ 0, and thus the relative frequency of each discrete
state n is approximately ρ(x, n). This can be made precise in terms of a Law of Large
Numbers for stochastic hybrid systems proven in [14].

3. Classical action from a large deviation principle

We now turn to the major part of the paper, namely, a new derivation of the classical
action corresponding to the abstract rate function of the LDP for a one-dimensional
PDMP introduced by Faggionato et al. [14, 13]. The advantage of our approach is that
it avoids many of the technical difficulties associated with probabilistic approaches to
large deviation theory [24]. We begin by introducing some notation in order to state
the LDP of Faggionato et al [14, 13] (section 3.1). The associated rate function JT
is expressed as a variational principle. In section 3.2 we summarize the main result
of our paper in the form of theorem 3.1, which expresses the equivalence of the rate
function JT with a classical action, whose associated Lagrangian is related to the
Perron eigenvalue of a certain linear operator. The latter depends on the transition
matrix W of the Markov chain and the nonlinear functions Fn(x), n ∈ Γ of the
piecewise deterministic system (2.1). The proof of theorem 3.1 is presented in section
3.3, where we explicitly derive the classical action by solving the variational principle
using the Perron-Frobenius theorem and the calculus-of-variations. Extensions of the
classical action to higher dimensional PDMPs and multi-scale processes are presented
in sections 3.4 and 3.5, respectively.

3.1. Large deviation principle of Faggionato et al [14, 13]

In order to write down the LDP of Faggionato et al [14, 13], it is first necessary to
introduce some notation. Let M+(Γ) denote the space of all probability measures
on Γ and introduce the product space M+(Γ)[0,T ]. For each t ∈ [0, T ], let ψ(t) =
(ψ0(t), . . . , ψN (t)) ∈M+(Γ) such that

ψn(t) ≥ 0,
∑
n∈Γ

ψn(t) = 1.
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A particular realization of the stochastic process, {(x(t), n(t))}t∈[0,T ], then lies in the

product space C([0, T ])×M+(Γ)[0,T ] with

ψn(t) = 1{n(t)=n} ≡
{

1, if n(t) = n,
0, if n(t) 6= n

(3.1)

and

x(t) = x0 +

∫ t

0

∑
n∈Γ

ψn(s)Fn(x(s))ds. (3.2)

Let Yx0 denote the subspace of C([0, T ]) ×M+(Γ)[0,T ] for which equation (3.2)
holds but ψ is now a general element of M+(Γ)[0,T ]. Such a space contains both
the set of trajectories of the stochastic hybrid system with ψn(t) given by equation
(3.1) and n(t) evolving according to the Markov chain, and the solution x∗(t) of the
averaged system (2.8) for which ψn = ψ∗n with ψ∗n(t) = ρ(n, x∗(t)). It can be proven
that Yx0 is a compact subspace of C([0, T ]) ×M+(Γ)[0,T ] with topology defined by
the metric [14]

d({(x(t), ψ(t))}t∈[0,T ], {(x̃(t), ψ̃(t))}t∈[0,T ])

= sup
t∈[0,T ]

|x(t)− x̃(t)|+
∑
n∈Γ

sup
0≤t≤T

∣∣∣∣∫ t

0

[ψn(s)− ψ̃n(s)]ds

∣∣∣∣ .
Finally, we take P εx0

to be the probability density functional or law of the set of
trajectories {x(t)}t∈[0,T ] ∈ C([0, T ],Ω).

The following large deviation principle then holds [14, 13]: Given an element
{x(t)}t∈[0,T ] ∈ C([0, T ],Ω),

Pεx0

[
{x(t)}t∈[0,T ]

]
∼ e−JT ({x(t)}t∈[0,T ])/ε, (3.3)

where the rate function JT : C([0, T ],Ω)→ [0,∞) is given by

JT ({x(t)}t∈[0,T ]) = inf
{ψ(t)}t∈[0,T ]:{x(t),ψ(t)}t∈[0,T ]∈Yx0

∫ T

0

j(x(t), ψ(t)) dt, (3.4)

and

j(x, ψ) = sup
z∈(0,∞)Γ

∑
(n,m)∈Γ×Γ

ψnWnm(x)

[
1− zm

zn

]
. (3.5)

Here the symbol ∼ means asymptotic logarithmic equivalence in the limit ε→ 0.
We summarize a few useful properties of j(x, ψ) defined by equation (3.5). Since

the double sum in equation (3.5) excludes diagonal terms, we introduce the set
Γ∆ = Γ × Γ\∆ where ∆ is the diagonal of Γ × Γ. Let cnm = ψnWnm(x). Suppose
that ψ is a strictly positive measure, ψn > 0 for all n ∈ Γ. It then follows from the
properties of the transition matrix W that the mapping c : Γ∆ → [0,∞) is irreducible
in the sense that, for all n 6= m ∈ Γ, there exists a finite sequence n1, n2, · · · , nk
such that n1 = n, nk = m and cnini+1

> 0 for i = 1, · · · , k − 1. Let RN denote the
set of (N + 1) × (N + 1) positive matrices with diagonal zero. Define the mapping
J : RN → R as

J (c) = sup
z∈[0,∞)Γ

Ĵ (c, z), Ĵ (c, z) =
∑

(n,m)∈Γ∆

cnm(1− zm/zn). (3.6)

The following lemma is proven in [14, 24] and follows largely from material found in
[38].
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Lemma 1: The function J is convex and continuous and takes its values in [0,∞).

Moreover, for each irreducible c, the supremum on [0,∞)Γ of the function Ĵ (c, ·) is
the unique solution of the set of equations∑

m∈Γ

cnm
zm
zn

=
∑
m∈Γ

cmn
zn
zm

, n ∈ Γ, (3.7)

under the normalization
∑
n∈Γ zn = 1.

A key idea behind the above LDP is that a slow dynamical process coupled to
the fast Markov chain on Γ rapidly samples the different discrete states of Γ according
to some non-negative measure ψ. In the limit ε → 0, one has ψ → ρ, where ρ is
the ergodic measure of the Markov chain. On the other hand, for small but non-
zero ε, ψ is itself distributed according to a LDP, whereby one averages the different
functions Fn(x) over the measure ψ to determine the dynamics of the slow system. In
most biological applications, one is not interested in the internal discrete state of the
system, that is, one only observes the statistical behavior of the continuous variable
x(t). For example, x(t) could represent the membrane voltage of a single neuron [33]
or the synaptic current in a population of neurons [3]. Faggionato et al. [14, 13]
explicitly calculated the rate function (3.4) for a restricted class of stochastic hybrid
systems, whose stationary density is exactly solvable. One major constraint on this
class of model is that the vector field of the piecewise deterministic system has non-
vanishing components within a given confinement domain. However, this constraint
does not hold for biological systems such as ion channels [22, 33, 5], gene networks
[23, 30], and neural networks [3]. (Faggionato et al. were motivated by a model of
molecular motors that is exactly solvable. Such a solvability condition also breaks
down for molecular motors when local chemical signaling is taken into account [31].)

3.2. Statement of main theorem

We now state the main result of our paper in the form of a theorem, which will then
be proven in section 3.3.

Theorem 3.1 Let λ = λ(x, µ) for fixed x, µ be the Perron eigenvalue of the linear
equation ∑

m∈Γ

Anm(x)zm(x, µ) + µFn(x)zn(x, µ) = λ(x, µ)zn(x, µ), (3.8)

where z(x, µ) = (zn(x, µ), n ∈ Γ) is the unique positive eigenvector of the linear
equation under the normalization

∑
n zn(x, µ) = 1. Similarly, let R(x, µ) =

(Rn(x, µ), n ∈ Γ) be the positive eigenvector of the adjoint equation∑
m∈Γ

A>nm(x)Rm(x, µ) + µFn(x)Rn(x, µ) = λ(x, µ)Rn(x, µ) (3.9)

under the normalization
∑
m zm(x, µ)Rm(x, µ) = 1. The rate function

JT ({x(t)}t∈[0,T ]) defined in equation (3.4) can then be written in the form of the
classical action

JT ({x(t)}t∈[0,T ]) =

∫ T

0

L(x, ẋ)dt, (3.10)

with Lagrangian given by

L(x, ẋ) = µ(x, ẋ)ẋ− λ(x(t), µ(x, ẋ)), (3.11)
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and µ = µ(x, ẋ) is given by the unique solution of the invertible equation

ẋ =
∑
m∈Γ

ψm(x, µ)Fm(x), (3.12)

with

ψm(x, µ) = zm(x, µ)Rm(x, µ). (3.13)

3.3. Proof of Theorem 3.1

The proof proceeds in two main steps.

[A] Evaluating the supremum of equation (3.5). We begin by introducing the
following ansatz regarding the solution z = (zn, n ∈ Γ) of the variational problem
(3.5) for fixed x and strictly positive measure ψ, namely, that it is an eigenvector of
the following matrix equation:

A(x)z + q ◦ z = λz (3.14)

for some bounded vector q = (qn, n ∈ Γ). Here, for any a,b ∈ RN+1,

[a ◦ b]n ≡ [diag(a)b]n = anbn.

Note that we are free to shift the vector q by a constant since, under the transformation
qn → qn − c, the eigenvalue shifts by λ → λ − c and the eigenvector is unchanged.
That is, for fixed x,

λ(x,q− c1N+1) = λ(x,q)− c. (3.15)

For simplicity, we choose c = qN and take Q = (q0, q1, . . . , qN−1, 0) so that λ(x,Q) =
λ(x,q)− qN and z = z(x,Q) are solutions of the matrix equation

A(x)z(x,Q) + Q ◦ z(x,Q) = λ(x,Q)z(x,Q). (3.16)

There are N independent variables, qn, n = 0, . . . , N−1. One of the crucial features of
the above ansatz is that we can then ensure zn = zn(x,Q) is strictly positive by using
the Perron-Frobenius theorem and taking λ = λ(x,Q) to be the Perron eigenvalue.
Indeed, choosing κ such that

κ > max
n=0,...,N−1

{|qn|}, (3.17)

it is clear that the new matrix A(x) + diag(Q) + κIN+1 is irreducible and positive.
According to the Perron-Frobenius theorem, it has a unique strictly positive
eigenvector z(x,Q) with the normalization

∑
m zm(x,Q) = 1, and this eigenvector

is also an eigenvalue of A + diag(Q) (but with a shifted eigenvalue).
We now show that for a given Q and fixed x, the Perron eigenvector z(x,Q) is

the solution to the variational problem (3.5) provided that the measure ψ takes the
specific form

ψn = ψn(x,Q) ≡ Rn(x,Q)zn(x,Q) (3.18)

for each n = 0, . . . , N − 1, where R(x,Q) = (Rn(x,Q), n ∈ Γ) is the corresponding
unique strictly positive eigenvector (up to scalar multiplication) of the adjoint linear
equation

A>(x)R(x,Q) + Q ◦R(x,Q) = λ(x,Q)R(x,Q), (3.19)
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such that z>R = 1. Equation (3.18) ensures that ψ is a strictly positive measure and

that
∑N
m=0 ψm = 1. We proceed by establishing that z(x,Q) satisfies equation (3.7)

for cnm = ψn(x,Q)Wnm(x) and ψn(x,Q) given by equation (3.18). The left-hand side
of (3.7) becomes

N∑
m=0

ψnWnm(x)
zm
zn

=
ψn
zn

N∑
m=0

Wnm(x)zm =
ψn
zn

(
λ(x,Q)−Qn +

∑
k

Wnk

)
zn

= ψn

(
λ(x,Q)−Qn +

∑
k

Wnk

)
, (3.20)

whereas the right-hand side of (3.7) reads

zn

N∑
m=0

Wmn(x)
ψm
zm

= zn

N∑
m=0

(
Amn(x) + δmn

N∑
k=0

Wnk

)
ψm
zm

.

Cancelling the factors of zn, setting ψm/zm = Rm and using equation (3.19) we recover
(3.20). Hence, equation (3.7) holds. Finally, setting ψn = ψn(x,Q) in equation (3.5)
we can evaluate the supremum to obtain

j(x, ψ) =

N∑
m,n=0

ψnWnm(x)

[
1− zm

zn

]

=

N∑
n=0

ψn

[
N∑
m=0

Wnm(x)− 1

zn

N∑
m=0

(
Anm(x) + δnm

N∑
k=0

Wnk(x)

)
zm

]

=

N∑
n=0

ψn[Qn − λ(x,Q)]

=

N−1∑
n=0

qnψn − λ(x,Q), (3.21)

since
∑N
m=0 ψm = 1 and QN = 0. For ease of notation, we have suppressed the explicit

dependence of z and ψ on x,Q.
In the given variational problem for fixed x, there are N independent variables

ψn, n = 0, . . . , N − 1 with ψN = 1 −
∑N−1
n=0 ψn. Similarly, there are N independent

variables qn, n = 0, . . . , N − 1. Therefore, equation (3.18) determines a mapping
between the sets {qn, n = 0, . . . , N − 1} and {ψn, n = 0, . . . , N − 1}. It remains to
show that there exists a unique solution Q for each ψ ∈M+(Γ), that is, the mapping
is invertible. For then we can set qn = qn(x, ψ) in equation (3.21) to obtain the value of
the supremum in equation (3.5) for any positive measure ψ ∈M+(Γ). Differentiating
equation (3.19) with respect to qm, m = 0, . . . , N −1, yields the inhomogeneous linear
equation

L(x,Q)
∂R

∂qm
≡
[
A>(x) + diag(Q)− λIN+1

] ∂R

∂qm
=

∂λ

∂qm
R−Rmem, (3.22)

where (em)n = δm,n. Multiplying both sides of equation (3.22) on the left with z>

and using (3.16) we obtain

∂λ(x,Q)

∂qm
= Rm(x,Q)zm(x,Q), m = 0, . . . , N − 1. (3.23)
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Since R and z are strictly positive, λ(x,Q) is a monotonically increasing function
of the qm. Moreover, equations (3.14) and (3.19) imply that, in the limit ql → ∞
with all other qm fixed, Rl, zl → 1 and ∂λ/∂ql → 1. On the other hand, if
ql → −∞ then Rl, zl → 0 and the Perron eigenvalue becomes independent of ql
with ∂λ/∂ql → 0. Hence, by continuity, for each ψ ∈ M+(Γ) there exists a vector Q
such that ψn = Rn(x,Q)zn(x,Q) for all n = 0, . . . , N − 1. For such a solution to be
unique, the inverse function theorem implies that the Jacobian of the transformation
must be invertible. Differentiating equation (3.23) with respect to qn shows that the
Jacobian is equivalent to the Hessian of λ with respect Q, since

Dmn(x,Q) ≡ ∂Rm(x,Q)zm(x,Q)

∂qn
=
∂2λ(x,Q)

∂qm∂qn
(3.24)

for all m,n = 0, . . . , N − 1. This also establishes that the Jacobian is a symmetric
matrix with real eigenvalues. Invertibility follows from the convexity of the function
J (c) defined by equation (3.6). That is, differentiating

j(x, ψ) = J (c), cnm = ψnWnm(x),

with respect to ψ for fixed x gives

Wnm(x)Wmm′(x)
∂2J (c)

∂cnm∂cmm′
=
∂2j(x, ψ)

∂ψn∂ψm
, (3.25)

with n,m 6= m′. On the other hand, differentiating equation (3.21) for j(x, ψ) with
respect to ψn gives

∂j(x, ψ)

∂ψn
= qn +

N−1∑
j=0

[
ψj −

∂λ

∂qj

]
∂qj
∂ψn

= qn,

and so

∂2j(x, ψ)

∂ψn∂ψm
=

∂qn
∂ψm

= [D−1]nm.

Hence, convexity of J (c) together with irreducibility of the non-negative transition
matrix W means that the Jacobian is invertible and positive definite.

In summary, we have shown that for a strictly positive measure ψ and fixed x, a
unique solution qn = qn(x, ψ) exists for all n = 0, . . . , N − 1, and we have solved the
first variational problem by identifying z with the unique (up to scalar multiplication),
strictly positive eigenfunction of the matrix equation (3.16). Now suppose ψ is a non-
negative rather than a strictly positive measure, that is, ψm = 0 for at least one state
m ∈ Γ. In this case cnm = ψnWnm(x), n 6= m, is not irreducible and lemma 1 no
longer applies. However, as proven by Faggionato et al. [14], the function J (c) is
continuous with respect to c. Hence, assuming that the form of the rate function (3.3)
still holds (which isn’t necessarily true), we can take a sequence of strictly positive

measures ψ(l) on Γ such that ψ
(l)
n → ψn for each n ∈ Γ. This implies that (for fixed

x)

c[ψ(l)]→ c[ψ]

and

j(x, ψ(l)) = J (c[ψ(l)])→ J (c[ψ]) = j(x, ψ),

so that one can extend equation (3.21) to non-negative measures by taking

qn(x, ψ) = lim
l→∞

qn(x, ψ(l)).
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Example. We will illustrate the Perron eigenvalue solution to the supremum
variational problem by considering an example for N = 1. Let us take the transition
matrix to be

W =

(
1/2 1/3
1/2 2/3

)
.

Consider the eigenvalue equation

Wz + q ◦ z = λz,

where we have absorbed the diagonal terms
∑
k=1,2Wkm into the definition of qm. The

resulting characteristic equation is quadratic in λ and the leading or Perron eigenvalue
is given by

λ =
q1 + q2

2
+

7

12
+

1

2

√
(q1 − q2)2 − (q1 − q2)/3 + 25/36.

It follows that

ψ1 ≡
∂λ

∂q1
=

1

2
+ f(q1 − q2), ψ2 ≡

∂λ

∂q2
=

1

2
− f(q1 − q2),

with

f(q) =
1

4

2q − 1/3√
q2 − q/3 + 25/36

.

Note that ψ1 + ψ2 = 1 as required. The function f(q) is a monotonically increasing
function of q with f(−∞) = −1/2 and f(∞) = 1/2. Thus, one can find a unique,
finite value of q = q1 − q2 for all ψ1 ∈ (0, 1), that is, for all strictly positive ψ. In the
case of a non-negative ψ with ψ1 = 0 or ψ2 = 0, we have q → ±∞.

[B] Evaluating the infimum of equation (3.4). The next step in the proof is to
substitute for j(x, ψ) in the rate function (3.4) using equation (3.21), which gives

JT ({x(t)}t∈[0,T ]) = inf
ψ:ẋ=

∑N
n=0 ψnFn(x)

∫ T

0

[
N−1∑
n=0

qn(t)ψn(t)− λ(x(t),Q(t))

]
dt, (3.26)

with qn(t) = qn(x(t), ψ(t)) and
∑N
m=0 ψm = 1. In order to solve this variational

problem, we introduce a Lagrange multiplier µ(t) and set

JT ({x(t)}t∈[0,T ]) = inf
ψ,µ

S[x, µ, ψ], (3.27)

where

S[x, µ, ψ] =

∫ T

0

[
N−1∑
n=0

qn(t)ψn(t)− λ(x(t),Q(t)) (3.28)

+µ(t)

(
ẋ−

N−1∑
n=0

[Fn(x)− FN (x)]ψn(t)− FN (x)

)]
dt,

and we have imposed the constraint
∑N
m=0 ψm = 1. The variational problem can now

be expressed in terms of functional derivatives of S:

δS

δµ(s)
= ẋ(s)−

N∑
n=0

Fn(x(s))ψn(s) = 0, (3.29a)
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and

δS

δψm(s)
=

N−1∑
n=0

∂qn
∂ψm

ψn(s) + qm(s)−
N−1∑
n=0

∂λ

∂qn

∂qn
∂ψm

− µ(s)[Fm(x(s))− FN (x(s))] = 0 (3.29b)

for m = 0, . . . N − 1. Combining with equations (3.18) and (3.23), we obtain the
following solution to the variational problem in terms of µ:

qm = µ[Fm(x)− FN (x)], (3.30a)

ψm(x, µ) = zm(x, µ)Rm(x, µ), (3.30b)

for all m = 0, . . . N − 1, with Rn(x, µ), zn(x, µ) the positive eigenvectors of the matrix
equation

A>(x)R(x, µ) + µF(x) ◦R(x, µ) = λ(x, µ)R(x, µ), (3.31)

and its adjoint, respectively. We have thus established Eqs. (3.8) and (3.9). Here

λ = λ(x, µ) ≡ FN (x) + λ(x,Q|qm = µ(Fm − FN ),m = 0, . . . , N − 1).

Substituting equation (3.30b) into (3.29a) shows that µ = µ(t) where µ(t) is the
solution to the equation

ẋ(t) =

N∑
n=0

Fn(x(t))ψn(x(t), µ(t)), (3.32)

provided that the equation is invertible for the given trajectory {x(t)}t∈[0,T ]. Hence,
evaluating the action at the infimum we have

JT ({x(t)}t∈[0,T ]) =

∫ T

0

[
µ(t)

N∑
n=0

Fn(x(t))ψn(µ(t), x(t))− λ(x(t), µ(t))

]
dt,

The final step is to show that equation (3.32) is invertible so that the function
µ(t) = µ(x(t), ẋ(t)) exists and, hence, the rate function JT has the required Lagrangian
form (3.10). From the inverse function theorem we require that

N∑
m=0

∂ψm(x, µ)

∂µ
Fm(x) 6= 0

for all x ∈ Ω. Following along identical lines to the analysis of equation (3.22), we
differentiate the linear equation (3.31) with respect to µ to give

L(x, µ)
∂R

∂µ
=
∂λ

∂µ
R− F ◦R, (3.33)

with L(x, µ) = L(x,Q)|qm=µ[Fm−FN ],m=0,...,N−1. Using the same arguments as
previously, we obtain

∂λ(x, µ)

∂µ
=

N∑
n=0

Fn(x)zn(x, µ)Rn(x, µ). (3.34)

Hence, we require

∂2λ(x, µ)

∂µ2
≡

N−1∑
m,n=0

∂2λ(x,Q)

∂qm∂qn

∣∣∣∣
qm=µ(Fm(x)−FN (x))

× (Fm(x)− FN (x))(Fn(x)− FN (x)) 6= 0.
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This holds since the Jacobian D of equation (3.24) is invertible and Fm(x) 6= FN (x)
for at least one m 6= N . Finally, from equation (3.17), we require µ to be bounded,
that is, there exists a κ for which

κ > µ max
m=0,...,N

{|Fm(x)|}

for all x ∈ Ω. Hence, we have obtained the classical action (3.10) from the LDP rate
function (3.4) and the proof of Theorem 3.1 is complete.

3.4. Extension to higher dimensions, x ∈ Rd, d > 1.

In theorem 3.1 we considered the case of one-dimensional piecewise deterministic
dynamics by taking x ∈ R. However, it is relatively straightforward to derive the
corresponding classical action for x ∈ Rd. When the internal state is n, the system
now evolves according to the ODE

ẋ = Fn(x), (3.35)

where the vector field Fn : Ω → Rd is a continuous function, locally Lipschitz. That
is, given a compact subset K of Ω, there exists a positive constant Kn(K) such that

|Fn(x)− Fn(y)| ≤ Kn(K)|x− y|, ∀x,y ∈ K. (3.36)

The rate function of the LDP (3.3) becomes

JT ({x(t)}t∈[0,T ]) =

∫ T

0

L(x, ẋ)dt, (3.37)

where L is the Lagrangian

L(x, ẋ) = 〈µ(x, ẋ), ẋ〉 − λ(x(t),µ(x, ẋ)),

and λ(x,µ) is the Perron eigenvalue of the linear equation

A(x)z(x,µ) + (F(x)µ) ◦ z(x,µ) = λ(x,µ)z(x,µ), (3.38)

where z(x,µ) is the positive eigenvector of the linear equation under the normalization∑
n zn(x,µ) = 1. Here

[a ◦ b]n = anbn, n = 0, · · · , N (3.39)

for any a,b ∈ RN+1 and F(x) is the (N + 1) × d matrix whose N + 1 rows are
the d-dimensional vectors Fm(x), m = 0, · · · , N . Finally, the d-dimensional vector
µ = µ(x, ẋ) is the solution of the invertible equation

ẋ =
∑
m∈Γ

ψm(x,µ)Fm(x), (3.40)

with

ψm(x,µ) = zm(x,µ)Rm(x,µ), (3.41)

where R is the positive eigenvector of the adjoint equation

A>(x)R(x,µ) + (F(x)µ) ◦R(x,µ) = λ(x,µ)R(x,µ) (3.42)

under the normalization
∑
m zm(x,µ)Rm(x,µ) = 1.
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3.5. Extension to a multi-scale process on R

So far we have assumed that the slow process is piecewise deterministic. However, one
of the useful features of taking the Lagrangian LDP [14, 13] as our starting point is
that it is relatively straightforward to extend our analysis to the case where the slow
process is a piecewise SDE. First, recall that the key idea behind the Faggionato et
al. Lagrangian construction is that the slow dynamical process coupled to the fast
Markov chain on Γ rapidly samples the different discrete states of Γ according to some
non-negative measure ψ. In order to extend this construction to a piecewise SDE, it
is necessary to take account of the fact that there are now two levels of stochasticity.
That is, after averaging the transition rates of the drift and variance of the SDE
with respect to a given measure ψ, the resulting system is still stochastic. Since the
slow system operates in a weak noise regime, it follows that one can apply an LDP
to the slow system for a given ψ. The LDP for the full system is then obtained by
combining the rate function of the slow system with the infimum rate function for
ψ. Here we sketch how to extend the analysis to a piecewise SDE. (Approaching
large deviation theory for multi-scale stochastic processes in terms of solutions to an
eigenvalue problem has also been considered by Feng and Kurtz [15].)

Consider the piecewise Ito SDE

dX(t) = Fn(X) +
√
εσn(X)dW (t), (3.43)

where n ∈ Γ and W (t) is a Wiener process. The drift term Fn(x) and diffusion
term σn(x) are both taken to be Lipschitz. When the piecewise SDE is coupled to
the fast discrete process on Γ, the stochastic dynamics is described by a differential
Chapman-Kolmogorov equation of the form (see also equation (2.6))

∂ρ(x, n, t)

∂t
= − ∂

∂x
[Fn(x)ρ(x, n, t)] +

ε

2

∂2

∂x2
[σ2
n(x)ρ(x, n, t)]

+
1

ε

∑
m

A>nm(x)ρ(x,m, t), (3.44)

where

P{X(t) ∈ (x, x+ dx), n(t) = n|x0, n0) = ρ(x, n, t)dx.

We define the measure space M+(Γ) as before, but now modify the definition of
the subspace Yx0

⊂ C([0, T ]) ×M+(Γ)[0,T ] by taking it to be the set of stochastic
trajectories satisfying

dX(t) =

N∑
n=0

ψn(t)Fn(X)dt+
√
ε

√√√√ N∑
n=0

ψn(t)σ2
n(X) dW (t)

≡ F (X,ψ)dt+
√
εσ(X,ψ)dW (t) (3.45)

for ψ ∈M+(Γ)[0,T ]. Such a space includes the set of trajectories of the piecewise SDE
(3.43) with ψn(t) given by equation (3.1) and n(t) evolving according to the Markov
chain on Γ. Consider a particular realization of the Wiener process W (t) on [0, T ],
which is independent of {x(t), ψ(t)}[0,T ]. For a given realization of W , one can write
down an LDP along identical lines to the case of a piecewise deterministic system, see
equation (3.3), yielding

JT ({X(t)}t∈[0,T ]) = inf
{ψ(t)}t∈[0,T ]:{X(t),ψ(t)}t∈[0,T ]∈Yx0

∫ T

0

j(X(t), ψ(t)) dt, (3.46)
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where X(t) is the sample path generated by the particular realization of W (t), and
j(X,ψ) is given by equation (3.21). If we now formally average with respect to the
Wiener process we find that

JT ({x(t)}t∈[0,T ]) = inf
{ψ(t)}t∈[0,T ]

S[x, ψ], (3.47)

where

S[x, ψ] =

∫ T

0

[
N−1∑
n=0

qn(t)ψn(t)− λ(x(t),Q(t)) +
(ẋ−

∑N
n=0 ψnFn(x))2

2
∑N
n=0 ψnσ

2
n(x)

]
dt, (3.48)

with qn(t) = qn(x(t), ψ(t)),
∑N
m=0 ψm(t) = 1 and λ the Perron eigenvalue of equation

(3.16). Note that the final term on the right-hand side is the well-known Freidlin-
Wentzell action for SDEs [17]. Taking the infimum with respect to ψk, k = 0, . . . , N−1,
gives

0 =
δS

δψk
= qk −

(ẋ−
∑N
n=0 ψnFn(x))[Fk(x)− FN (x)]∑N

n=0 ψnσ
2
n

(3.49)

−
(ẋ−

∑N
n=0 ψnFn(x))2[σ2

k(x)− σ2
N (x)]

2[
∑N
n=0 ψnσ

2
n]2

+

N−1∑
n=0

(
ψn −

∂λ

∂qn

)
∂qn
∂ψk

.

Introducing the new variables

µ =

N∑
n=0

ψnFn(x), σ2 =

N∑
n=0

ψnσ
2
n(x), ν =

ẋ− µ
σ2

, (3.50)

we have

qk = ν[Fk(x)− FN (x)] +
ν2

2
[σ2
k(x)− σ2

N (x)], (3.51)

and

ψm = ∂λ/∂qm = Rm(x, ν)zm(x, ν), (3.52)

with Rn(x, ν), zn(x, ν) the unique positive eigenvectors of the matrix equation∑
n

A>mn(x)Rn(x, ν) + (νFm(x) + ν2σ2
m(x)/2)Rm(x, ν) = λ(x, ν)Rm(x, ν). (3.53)

and its adjoint. Moreover, equation (3.50) implies that ν = ν(x(t), ẋ(t)) ≡ ν(t) where
ν(t) is the solution to the equation

ẋ(t) = ν(t)

N∑
n=0

σ2
n(x(t))ψn(x(t), ν(t)) +

N∑
n=0

Fn(x(t))ψn(x(t), ν(t)), (3.54)

provided that the equation is invertible for the given trajectory {x(t)}t∈[0,T ]. Finally,
evaluating the action at the infimum yields the corresponding classical action:

JT ({x(t)}t∈[0,T ]) =

∫ T

0

[
ν(t)

N∑
n=0

Fn(x(t))ψn(x(t), ν(t))

+
ν(t)2

2

N∑
n=0

ψn(x(t), ν(t))σ2
n(x(t))− λ(x(t), ν(t)) +

ν(t)2

2

]
dt

=

∫ T

0

L(x, ẋ)dt. (3.55)
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4. Classical Hamiltonian and the WKB approximation of the stationary
state

As indicated in the introduction, for non-hybrid stochastic processes the quasipotential
of WKB theory satisfies a Hamilton-Jacobi equation H(x, ∂xΦ) = 0, where H is the
Hamiltonian obtained from the classical action of large deviation theory. It turns out
that such a connection is more subtle in the case of a PDMP, as we now show. We
will focus on the one-dimensional case of theorem 3.1. Given the action (3.10), we
can determine the Hamiltonian H from the Lagrangian L according to the Fenchel-
Legendre transformation:

H(x, p) = sup
y

[(p− µ(x, y))y + λ(x, µ(x, y))] . (4.1)

Evaluating the right-hand side yields the equation

p− µ(x, y) +

[
∂λ

∂µ
− y
]
∂µ

∂y
= 0 (4.2)

with

y =
∑
m∈Γ

ψm(x, µ)Fm(x).

Differentiating equation (3.8) with respect to µ gives∑
m∈Γ

Anm(x)
∂zm(x, µ)

∂µ
+ [µFn(x)− λ(x, µ))

∂zn(x, µ)

∂µ

=

[
∂λ(x, µ)

∂µ
− Fn(x)

]
zn(x, µ). (4.3)

Since the adjoint of the linear operator on the left-hand side has a one-dimensional
null space spanned by Rn, it follows from the normalization

∑
m zmRm = 1 that

∂λ(x, µ)

∂µ
=
∑
m∈Γ

ψm(x, µ)Fm(x) = y.

Equation (4.2) thus shows that p = µ, and we can identify p as the “conjugate
momentum” of the Hamiltonian

H = λ(x, p), (4.4)

where λ(x, p) is the Perron eigenvalue of the linear equation (3.8) and its adjoint (3.9).
In order to relate the Hamiltonian (4.4) with the quasipotential of WKB methods,

consider the WKB approximation of the stationary state ρss of the CK equation (2.5)
(assuming it exists), with

Lρss(x, n) ≡ ∂Fn(x)ρss(x, n)

∂x
− 1

ε

∑
m∈Γ

A>nm(x)ρss(x,m) = 0. (4.5)

The WKB approximation of ρss takes the form

ρss(x, n) ∼ η(x, n) exp

(
−Φ(x)

ε

)
. (4.6)

Substituting into equation (4.5) yields∑
m∈Γ

(
A>nm(x) + Φ′(x)δn,mFm(x)

)
η(x,m) = ε

dFn(x)η(x, n)

dx
, (4.7)
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where Φ′ = dΦ/dx. Introducing the asymptotic expansions η ∼ η(0) + εη(1) + . . . and
Φ ∼ Φ0 + εΦ1 + . . ., the leading order equation is∑

m∈Γ

A>nm(x)η(0)(x,m) = −Φ′0(x)Fn(x)η(0)(x, n). (4.8)

As it stands, it is not clear that (4.8) has a solution for which η(0)(x,m) is positive
for all x,m, and the relationship to the Hamiltonian structure of large deviation theory
is not explicit. However, the structure of equation (4.8) is a reduced version of equation
(3.9). This suggests introducing the family of eigenvalue equations∑

m∈Γ

A>nm(x)Rm(x, p) + pFn(x)Rn(x, p) = λ(x, p)Rn(x, p), (4.9)

which are parameterized by the pair (x, p) with p an auxiliary variable and λ(x, p)
the Perron eigenvalue. Comparison of equation (4.8) with (4.9) then shows that we
can make the identifications Φ′0(x) = p, η(0)(x,m) = Rm(x, p) and λ(x, p) = 0. It
immediately follows that η(0) is positive. The quasipotential is then the solution of
the Hamilton-Jacobi equation

λ(x,Φ′0(x)) = 0. (4.10)

This is equivalent to finding zero energy solutions of Hamilton’s equations

ẋ =
∂λ(x, p)

∂p
, ṗ = −∂λ(x, p)

∂x
, (4.11)

and identifying Φ0 as the action along the resulting solution curve (x(t), p(t)):

Φ0(x) =

∫ T

−∞
p(t)ẋ(t)dt, (4.12)

with x(T ) = x. Note that here t is the parameter of a curve rather than physical time.
One of the major applications of WKB methods is to solving escape problems

for stochastic process in the weak-noise limit, both for non-hybrid systems [27, 28,
39, 21, 26, 12], and hybrid systems [22, 32, 30, 33, 5]. For example, suppose that
the mean-field equation (2.8) is bistable with two stable fixed-points x± separated
by an unstable fixed point x0, see also Fig. 1 of section 5. Given the quasipotential
Φ0, the mean first passage time τ to escape from x− via x0, say, can be calculated
by considering higher order terms in the WKB approximation, and using matched
asymptotics to deal with an imposed absorbing boundary at x0. One finds that τ
takes the general Arrhenius form [22, 32]

τ ∼ χ(x0, x−)√
|Φ′′0 (x0)|Φ′′0 (x−)

e[Φ0(x0)−Φ0(x−)]/ε,

where χ is an appropriate prefactor. Hence, the WKB method provides a powerful
calculational tool. On the other hand, there is no a priori justification for interpreting
the quasipotential and its associated Hamiltonian in terms of an underlying variational
principle for most probable paths in the space of stochastic trajectories. This becomes
crucial when solving escape problems in higher dimensions, since a metastable state is
now surrounded by a non-trivial boundary (rather than a single point) and one needs
to determine the relative weighting of optimal paths crossing different points on the
boundary. Establishing the connection between WKB analysis and large deviation
theory provides such a variational principle.
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5. Applications to stochastic ion channels

In this final section we illustrate the Hamiltonian structure of stochastic hybrid
systems by considering a few explicit models taken from neuroscience.

5.1. Binary model

Before considering conductance-based models of membrane voltage fluctuations, we
begin with the simple example of a binary stochastic hybrid process (two discrete states
n = 0, 1), which was analyzed in some detail by Faggionato et al [13] using a different
method. The latter authors exploited the fact that the model is exactly solvable,
in the sense that the stationary density of the corresponding Chapman-Kolmogorov
equation can be computed explicitly, and used a fluctuation-dissipation theorem to
determine the Hamiltonian and quasipotential. Here we will obtain the same results
more directly by calculating the Perron eigenvalue. One biological application of
the binary model is to the bidirectional transport of a molecular motor along a one-
dimensional microtubular track, in which x represents the spatial location of the motor
on the track and the two discrete states represent the motor moving either towards
the + end or − end of the track. (In more complex models, the discrete space Γ
represents multiple internal conformational states of the motor, each of which has an
associated velocity on the track [3].)

Suppose that the continuous variable evolves according to piecewise dynamics on
some finite interval (a, b),

ẋ = Fn(x), n = 0, 1, (5.1)

with F0, F1 continuous and locally Lipschitz. Suppose that F0, F1 are non-vanishing
within the interval (a, b), and Fn(a) ≥ 0, Fn(b) ≤ 0 for n = 0, 1; the dynamics is then
confined to (a, b). Denote the transition rates of the two-state Markov chain by ω±(x)
with

{n = 0}
ω+(x)



ω−(x)
{n = 1}.

The stationary measure of the Markov chain is given by

ρ(x, 0) =
ω−(x)

ω−(x) + ω−(x)
, ρ(x, 1) =

ω+(x)

ω−(x) + ω−(x)
. (5.2)

The linear equation (3.9) can be written as the two-dimensional system(
−ω+(x) + pF0(x) ω−(x)

ω+(x) −ω−(x) + pF1(x)

)(
R0

R1

)
= λ

(
R0

R1

)
. (5.3)

The corresponding characteristic equation is

0 = λ2 + λ[ω+(x) + ω−(x)− p(F0(x) + F1(x))]

+ (pF1(x)− ω−(x))(pF0(x)− ω+(x))− ω−(x)ω+(x).

It follows that the Perron eigenvalue is given by

λ(x, p) =
1

2

[
Σ(x, p) +

√
Σ(x, p)2 − 4γ(x, p)

]
, (5.4)

where

Σ(x, p) = p(F0(x) + F1(x))− [ω+(x) + ω−(x)],
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and

γ(x, p) = (pF1(x)− ω−(x))(pF0(x)− ω+(x))− ω−(x)ω+(x).

A little algebra shows that

D(x, p) ≡ Σ(x, p)2 − 4γ(x, p) = [p(F0 − F1)− (ω+ − ω−)]2 + ω+ω− > 0,

so that as expected λ is real. Hence, from Hamilton’s equations

ẋ =
∂λ(x, p)

∂p

=
F0(x) + F1(x)

2
+
∂D(x, p)

∂p

1

2
√
D(x, p)

(5.5)

=
F0(x) + F1(x)

2
+
F0(x)− F1(x)

2

p(F0 − F1)− (ω+ − ω−)√
[p(F0 − F1)− (ω+ − ω−)]2 + ω+ω−

,

which is the same result as obtained in example 10.4 of Faggionato et al [13]. Moreover,
writing

ẋ = F0(x)ψ0(x) + F1(x)ψ1(x),

we see that

ψ0(x) =
1

2

[
1 +

p(F0 − F1)− (ω+ − ω−)√
[p(F0 − F1)− (ω+ − ω−)]2 + ω+ω−

]
, (5.6)

and

ψ1(x) =
1

2

[
1− p(F0 − F1)− (ω+ − ω−)√

[p(F0 − F1)− (ω+ − ω−)]2 + ω+ω−

]
, (5.7)

so that ψ0,1(x) ≥ 0 with ψ0(x) + ψ1(x) = 1.

5.2. Stochastic Na+ ion channels and the initiation of spontaneous action potentials

An important example of stochastic hybrid systems at the single-cell level concerns a
conductance-based model of a neuron, in which the stochastic opening of membrane
ion channels generates a stochastic ionic current that drives the membrane voltage. It
is then possible that ion channel noise induces spontaneous action potentials (SAPs),
which can have a large effect on a neuron’s function [16, 9, 22, 19, 8, 33, 5]. If SAPs
are too frequent, a neuron cannot reliably perform its computational role. Hence, ion
channel noise imposes a fundamental limit on the density of neural tissue. Smaller
neurons must function with fewer ion channels, making ion channel fluctuations more
significant and more likely to cause a SAP. Here we will consider the simple case of a
single type of ion channel, namely, a fast sodium (Na) channel, which was previously
analyzed using WKB methods [22]. Let x(t) denote the membrane voltage of the
neuron at time t and N be the fixed number of sodium channels. We assume that
each channel can either be open (O) or closed (C), and can switch between each state
according to the kinetic scheme

C
α(x)


β(x)

O, (5.8)

with voltage-dependent transition rates. (A more detailed biophysical model would
need to treat each ion channel as a cluster of subunits rather than a single unit. In
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other words, the Markov chain of events associated with opening and closing of an
ion channel would involve transitions between more than two internal states,.) The
stochastic membrane voltage is taken evolves according to the piecewise deterministic
equation

dx

dt
= Fn(x) ≡ n

N
f(x)− g(x), (5.9)

where n is the number of open ion channels at time t, and

f(x) = gNa(VNa − x), g(x) = −gL[VL − x]− I.
Here gNa is the maximal conductance of a sodium channel and VNa is the corresponding
membrane reversal potential. Similarly, gL and Vl are the effective maximal
conductance and reversal potential of any other currents, which are assumed to be
independent of the opening and closing of ion channels, and I is an external current.
The four quantities (gNa, gL, VNa, VL) are taken to be constants. Since the right-hand
side of (5.9) is negative for large x and positive for small x, it follows that the voltage
x is confined to some interval Ω = [xL, xR]. The function Fn(x) is clearly continuous
and locally Lipschitz.

In this example the space Γ of discrete states is the set of integers {n =
0, 1, . . . , N} and the Markov chain is given by a birth-death process:

n →
ω+(n,x)/ε

n+ 1, n →
ω−(n,x)/ε

n− 1, (5.10)

with transition rates

ω+(x, n) = α(x)(N − n), ω−(x, n) = β(x)n. (5.11)

The small parameter ε reflects the fact that sodium channels open at a much faster
rate than the relaxation dynamics of the voltage [22]. It follows that the matrix A(x)
for fixed x is tridiagonal matrix with

An−1,n(x) = ω+(x, n− 1), An+1,n(x) = ω−(x, n+ 1), (5.12a)

Ann(x) = −ω+(x, n)− ω−(n) (5.12b)

for n = 0, 1, . . . , N . It is straightforward to show that the Markov chain is ergodic
with unique invariant measure (for fixed n) given by

ρ(x, n) =
N !

(N − n)!n!
a(x)nb(x)N−n, (5.13)

with

a(x) =
α(x)

α(x) + β(x)
, b(x) =

β(x)

α(x) + β(x)
. (5.14)

The above stochastic hybrid system satisfies all of the conditions specified in
section 2. Hence, the law of large numbers implies that in the mean-field limit ε→ 0,
we obtain the deterministic kinetic equation

dx

dt
= F (x) ≡ a(x)f(x)− g(x), (5.15)

where

a(x) = 〈n〉/N, 〈n〉 =

N∑
n=1

nρ(x, n),
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and ρ is the stationary density (5.13). One of the features of the averaged model is that
it can exhibit bistability for a range of physiologically reasonable parameter values.
This is illustrated in Fig. 1, where we plot the deterministic potential U(x) = −dF/dx
as a function of x. Here x− represents a resting state of the neuron, whereas x+

represents an active state; noise-induced transitions from x− to x+ can be interpreted
in terms of the initiation of a spontaneous action potential. Elsewhere, WKB methods
and matched asymptotics have been used to calculate the MFPT to escape from x−.
Here, we will focus on the quasipotential and its relation to the Perron eigenvalue

Substituting the explicit expressions for A and Fn(x) into equation (3.9), yields
the following equation for the Perron eigenvalue λ and the right eigenvector R:

(N − n+ 1)α(x)Rn−1 − [λ+ nβ(x) + (N − n)α(x)]Rn

+ (n+ 1)β(x)Rn+1 = −p
( n
N
f(x)− g(x)

)
Rn. (5.16)

Consider the trial solution [5]

Rn(x, p) =
Γ(x, p)n

(N − n)!n!
, (5.17)

which yields the following equation relating Γ and λ:

nα

Γ
+ Γβ(N − n)− λ− nβ − (N − n)α = −p

( n
N
f − g

)
.

Collecting terms independent of n and terms linear in n yields the pair of equations

p = − N

f(x)

(
1

Γ(x, p)
+ 1

)
(α(x)− β(x)Γ(x, p)) , (5.18)

and

λ(x, p) = −N(α(x)− Γ(x, p)β(x))− pg(x). (5.19)

U(x)

x [mV]

x-
x0

x+

-100 -80 -60 -40 -20 0 20 40 60 80 100

I = I*

I < I*

Figure 1. Plot of deterministic potential U(x) as a function of voltage x
for different values of the external stimulus current I. Parameter values are
VNa = 120 mV, VL = −62.3 mV, gNa = 4.4 mS/cm2, gL = 2.2 mS/cm2,
and α(x) = β exp[(x−v1)/v2] with β = 0.8 s−1, v1 = −1.2mV , v2 = 18mv.
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Eliminating Γ from these equation gives

p =
1

f(x)

(
Nβ(x)

λ(x, p) +Nα(x) + pg(x)
+ 1

)
(λ(x, p) + pg(x)).

This yields a quadratic equation for λ of the form

λ2 + σ(x)λ− h(x, p) = 0, (5.20)

with

σ(x) = (2g(x)− f(x)) +N(α(x) + β(x)),

h(x, p) = p[−Nβ(x)g(x) + (Nα(x) + pg(x))(f(x)− g(x))].

Given the Perron eigenvalue, we can determine the quasipotential Φ(x) by solving
the Hamiton-Jacobi equation λ(x, ∂xΦ) = 0. Equation (5.20) then yields the reduced
Hamilton-Jacobi equation

h(x, ∂xΦ0) = 0. (5.21)

The latter is precisely the equation for the quasipotential previously derived using
WKB methods [33]. It has the following pair of solutions for Φ′0 = ∂xΦ0:

Φ′0 = 0 and Φ′0(x) = −N α(x)f(x)− (α(x) + β)g(x)

g(x)(f(x)− g(x))
. (5.22)

The trivial solution Φ0 = constant occurs along deterministic trajectories, which
converge to the fixed point, whereas the non-trivial solution for Φ0(x) occurs along the
most likely escape trajectories. In Fig. 2 we show solutions to Hamilton’s equations
in the (x, p)-plane, highlighting the zero energy maximum likelihood curve linking x−
and x0.

5.3. Stochastic Morris-Lecar model

One of the major simplifications of the above model is to assume that the slow
potassium channels are frozen. If one now incorporates the slow opening and closing
of these channels, then the underlying deterministic system becomes excitable rather
than bistable. That is, there is a single stable fixed point such that for small stimuli
the voltage returns directly to rest, whereas for stronger stimuli the voltage makes a
large detour before returning to rest, which corresponds to an action potential. There
is no longer a well-defined, unique firing threshold. A simple deterministic model of
neural excitability is the Morris-Lecar (ML) model [29]:

ẋ = a(x)fNa(x) + yfK(x)− g(x), (5.23)

ẏ =
y∞(x)− y
τy(x)

, (5.24)

where x is voltage and y represents the fraction of open K+ channels. The dynamics
of this system can be explored using phase-plane analysis as illustrated in Fig. 3. A
slow/fast analysis of the deterministic system suggests that the initiation of an action
potential occurs without any change in w, thus motivating the analysis of Keener and
Newby [22]. However, it turns out that this adiabatic approximation breaks down
when stochastic fluctuations in the opening and closing of K+ channels are taken into
account. This can be established by extending the WKB analysis outlined in section
4 to a stochastic version of the ML model [33]. Since one now has two continuous
variables x and y in the deterministic limit, it follows that stochastic trajectories in
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x

x- x*
x+

p

Figure 2. Phase portrait of Hamilton’s equations of motion for the ion
channel model with Hamiltonian given by the Perron eigenvalue. (x and p
are taken to be dimensionless.) The zero energy solution representing the
maximum likelihood path of escape from x− is shown as the gray curve.
(The corresponding path from x+ is not shown.) Same parameter values
as Fig. 1 and I = 0.

the phase-plane correspond to characteristic projections of an underlying Hamiltonian
dynamical system. In general, it is difficult to solve FPT problems in more than one
dimension. In the case of a metastable state with a well-defined basin of attraction,
one has to calculate the MFPT to cross the separatrices forming the boundary of the
basin of attraction. There is an additional level of complexity for an excitable system,
due to the fact that there is no well-defined deterministic separatrix. Interestingly,
one finds that the stochastic ML model has an effective separatrix that any stochastic
trajectory has to cross in order to generate a stochastic action potential [33], see also
[25].

Here we focus on calculating the Hamiltonian associated with the LDP for the
stochastic Morris-Lecar model. Suppose that at time t there are n = 0, 1, · · · , N open
Na channels and m = 0, 1, · · · ,M open K channels. The membrane voltage x then
evolves as

dx

dt
= F (x,m, n) ≡ n

N
fNa(x) +

m

M
fK(x) + fL(x) + I. (5.25)

We assume that each channel is either open or closed and switches between each state
according to

O
αi(x)


βi(x)

C, i = Na, K. (5.26)

The space Γ of discrete states is the set of integer pairs (n,m) with 0 ≤ n ≤ wN, 0 ≤
m ≤M and the Markov chain is given by a birth-death process

(n,m) →
ω±Na(n,x)

(n± 1,m), (n,m) →
ω±K (m,x)

(n,m± 1), (5.27)
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Figure 3. Deterministic phase plane dynamics. Thick curves show the nullclines:
ẋ = 0 as grey and ẏ = 0 as black. Black stream lines represent deterministic
trajectories. Green/blue curves represent an action potential trajectory in the
limit of slow y.

with transition rates

ω−Na(n, x) = nβNa(x), ω+
Na(n, x) = (N − n)αNa(x), (5.28a)

ω−K(m,x) = mβK(x), ω+
K(m,x) = (M −m)αK(x). (5.28b)

In contrast to the bistable sodium ion channel model of section 5.2, we cannot
treat both the Na and K channel kinetics as fast, and therefore we cannot develop
a variational problem by scaling all transition rates in terms of a small parameter ε
and applying the analysis of section 5. In fact, rather than a piecewise deterministic
system, we now have a multi-scale stochastic system, in which both fast and slow
processes are intrinsically stochastic. Multi-scale stochastic processes also arise in
models of gene regulatory networks [30]. We will proceed along similar lines to
Ref. [7] by treating n(t) as a fast variable with αNa, βNa = O(1/ε), and treating
y(t) = m(t)/M as a continuous (recovery) variable with M = 1/ε. We can then derive
a piecewise hybrid SDE by carrying out a system size expansion with respect to y.
Setting MΩ±(x, y) = ω±m(My, x), we obtain the SDE [7]

dX(t) = Fn(X,Y )dt (5.29a)

dY (t) = [Ω+(X,Y )− Ω−(X,Y )]dt+
√
εσ2(X,Y )dW (t), (5.29b)

with

Fn(x, y) =
n

N
fNa(x) + yfK(x) + fL(x) + I, σ2(x, y) = Ω+(x, y) + Ω−(x, y). (5.30)

We can now determine the Hamiltonian of the associated LDP by combining our
analysis in sections 3.4 and 3.5. That is, H(x,p) = λ(x,p) with x = (x, y),p =
(px, py), and λ is the Perron eigenvalue of the linear equation

λ(x,p)Rn(x,p) =
∑
m

A>nm(x)Rm(x,p)

+ {pxFn(x) + py[Ω+(x, y)− Ω−(x, y)]}Rn(x,p)
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+
1

2
p2
yσ

2(x, y)Rn(x,p), (5.31)

where the matrix A is the same as the Na model of section 5.2. Equation (5.31) can be
solved along similar lines to (5.16) using the Ansatz Rn(x,p) = Γ(x,p)n/(n!(N−n)!).
Collecting terms linear in n gives

Γ(x,p) = αNa(x)− 1

N
(pxg(x,w) + h(x, y, py)− λ(x,p)),

where g(x, y) = yfK(x) + fL(x) and

h(x, y, py) = py[Ω+(x, y)− Ω−(x, y)] +
1

2
p2
yσ

2(x, y). (5.32)

On the other hand, collecting terms independent of n and substituting for Γ(x,p)
gives the following quadratic equation for λ:

λ2 − (2h(x, y, py) + k(x, y, px))λ+ h1(x,p) = 0, (5.33)

with

k(x, y, px) = (2g(x, y) + fNa(x))px −N/(1− y∞(x)),

and

h1(x,p) = (2g(x, y) + fNa(x))pxh(x, y, py)

+ (fNa(x) + g(x, y))g(x, y)p2
x + h(x, y, py)2 (5.34)

− N

1− y∞(x)
([y∞(x)fNa(x) + g(x, y)]px + h(x, y, py)) ,

with y∞(x) = αK(x)/(αK(x)+βK(x)). Note, in particular, for escape problems we are
interested in zero energy solutions of Hamilton’s equations, which reduce to solutions
of h1(x,p) = 0. Our derivation of the Hamiltonian based on an LDP is equivalent to
one obtained previously using formal WKB methods [33].
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