Class Segmentation to Improve Fuzzy Prototype Construction: Visualization and Characterization of Non Homogeneous Classes

Abstract : In this paper, we present a new method to construct fuzzy prototypes of heterogeneous classes, in a supervised learning context. Heterogeneous classes are classes where the coexistence of far behaviours can be observed. Our approach consists in two stages. The first one enables to discover, in an original method, the different behaviours within a class by decomposing it in subclasses. In the second stage, we construct a fuzzy prototype for each subclass by using typicality degrees. Thanks to this decomposition of a class and to this characterization of typical behaviours, we propose an intuitive summarization of a class. We illustrate the advantages of our method on both artificial and real dataset.
Type de document :
Communication dans un congrès
2006 IEEE International Conference on Fuzzy Systems, Jul 2006, Vancouver, Canada. pp.555--559, 2006
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01072669
Contributeur : Maria Rifqi <>
Soumis le : mercredi 8 octobre 2014 - 14:05:47
Dernière modification le : mercredi 21 mars 2018 - 18:58:10
Document(s) archivé(s) le : vendredi 9 janvier 2015 - 10:55:53

Fichier

01681766.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01072669, version 1

Collections

Citation

Jason Forest, Maria Rifqi, Bernadette Bouchon-Meunier. Class Segmentation to Improve Fuzzy Prototype Construction: Visualization and Characterization of Non Homogeneous Classes. 2006 IEEE International Conference on Fuzzy Systems, Jul 2006, Vancouver, Canada. pp.555--559, 2006. 〈hal-01072669〉

Partager

Métriques

Consultations de la notice

68

Téléchargements de fichiers

85