Augmented Lagrangian methods for transport optimization, Mean-Field Games and degenerate PDEs

Abstract : Many problems from mass transport can be reformulated as variational problems under a prescribed divergence constraint (static problems) or subject to a time dependent continuity equation which again can also be formulated as a divergence constraint but in time and space. The variational class of Mean-Field Games introduced by Lasry and Lions may also be interpreted as a generalisation of the time-dependent optimal transport problem. Following Benamou and Brenier, we show that augmented Lagrangian methods are well-suited to treat convex but nonsmooth problems. It includes in particular Monge historic optimal transport problem. A Finite Element discretization and implementation of the method is used to provide numerical simulations and a convergence study.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01073143
Contributeur : Jean-David Benamou <>
Soumis le : vendredi 10 octobre 2014 - 09:42:21
Dernière modification le : vendredi 25 mai 2018 - 12:02:06
Document(s) archivé(s) le : dimanche 11 janvier 2015 - 10:11:07

Fichier

ALG2_Draft.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01073143, version 1

Collections

Citation

Jean-David Benamou, Guillaume Carlier. Augmented Lagrangian methods for transport optimization, Mean-Field Games and degenerate PDEs. 2014. 〈hal-01073143〉

Partager

Métriques

Consultations de la notice

585

Téléchargements de fichiers

889