
HAL Id: hal-01073655
https://inria.hal.science/hal-01073655

Submitted on 10 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qualitative behavioral reasoning from components’
interfaces to components’ functions for DMU adaption

to FE analyses
Ahmad Shahwan, Jean-Claude Léon, Gilles Foucault, Moreno Trlin, Olivier

Palombi

To cite this version:
Ahmad Shahwan, Jean-Claude Léon, Gilles Foucault, Moreno Trlin, Olivier Palombi. Qualitative
behavioral reasoning from components’ interfaces to components’ functions for DMU adaption to
FE analyses. Computer-Aided Design, 2013, 45 (2), pp.383-394. �10.1016/j.cad.2012.10.021�. �hal-
01073655�

https://inria.hal.science/hal-01073655
https://hal.archives-ouvertes.fr

Qualitative behavioral reasoning from components’ interfaces to components’

functions for DMU adaption to FE analyses

Ahmad Shahwan a,∗ Jean-Claude Léon b Gilles Foucault a Moreno Trlin a Olivier Palombi b

aUniversity of Grenoble - G-SCOP laboratory, 46 av. Félix Viallet, 38000, Grenoble, France
bUniversity of Grenoble / INRIA - JLK laboratory, 655, av. de l’Europe, 38334 Montbonnot, France

Abstract

A Digital Mock-Up (DMU), with its B-Rep model of product components, is a standard industrial representation that lacks
geometric information about interfaces between components. Component shapes reflect common engineers practice that influence
component interfaces with interferences and not only contacts.

The proposed approach builds upon relationships between function, behavior and shape to derive functional information from
the geometry of component interfaces. Among these concepts, the concept of behavior is more difficult to set up and connect to the
geometry of interfaces and functions. Indeed, states and design rules are introduced to express the behavior of components through
a qualitative reasoning process. This reasoning process, in turn, takes advantage of domain knowledge rules and facts, checking the
validity of certain hypotheses that must hold true all along a specific state of the product’s lifecycle, such as operational, stand-by
or relaxed states. Eliminating configurations that contradict one or more of those hypotheses in their corresponding reference state
reduces ambiguity, subsequently producing functional information in a bottom-up manner.

This bottom-up process starts with the generation of a Conventional Interfaces Graph (CIG) with components as nodes, and
conventional interfaces (CI) as arcs. A CI is initially defined by a geometric interaction that can be a contact or an interference
between two components. CIs are then populated with Functional Interpretations (FI) according to their geometric properties,
producing potentially many combinations. A first step of the reasoning process, the validation against reference states, reduces the
number of FIs per CI.

Domain knowledge rules are then applied again to group semantics of components interfaces into one functional designation per
component to connect together geometric entities of its boundary with its function.

Key words: product design, DMUs, geometric model, functional designation, semantics, reasoning and knowledge management

1. Introduction

Generating models for Finite Element (FE) analysis
from B-Rep CAD models of components often requires
shape transformations to remove details [1,2] or idealize
sub-domains [3] to meet the engineer’s requirements in
terms of FE mesh generation, simulation objectives, accu-
racy and time to fit into a Product Development Process
(PDP) [4]. The corresponding geometric transformations
are still raising open issues to achieve efficiently these
transformations under simulation criteria. However, com-

∗ tel. +33 608552947
Email addresses: Ahmad.Shahwan@grenoble-inp.fr (Ahmad

Shahwan), Jean-Claude.Leon@grenoble-inp.fr (Jean-Claude
Léon), Gilles.Foucault@ujf-grenoble.fr (Gilles Foucault),
Moreno.Trlin@inria.fr (Moreno Trlin),
OPalombi@chu-grenoble.fr (Olivier Palombi).

panies, e.g. at the aircraft industry, are starting to increase
the complexity of simulation models where the objective
is to simulate the structural behavior of assemblies with
up to thousands of components. In this case, the starting
point of the FE preparation process is a Digital Mock-
Up (DMU), as available from CAD software. Currently,
this task is very tedious for a small assembly with tens of
components and it is not achievable for very large ones
because most of the processing is performed interactively
by structural engineers. Indeed, a DMU contains essen-
tially geometric entities that can support this preparation
process whereas engineers refer to component functions to
decide whether and how they can be idealized (see Fig. 2),
e.g. whether bolts should be idealized as beams or simpli-
fied as shapes of revolution with friction areas set up at
the interfaces between plates. To this end, shape trans-
formations can be automated if component functions are

available and if their geometric model is structured with
interfaces and elementary functions, e.g. threaded areas
of bolts can be used to define FE beam axes, location of
bolt holes in plates explicitly identify which holes can be
removed when bolts and plates are idealized.
From an analysis of DMUs’ content, we describe how

their B-Rep model can be processed through a qualitative
reasoning process to derive functional information at the
interfaces between components up to the global level of
components through their functional designation so that
meaningful configurations, e.g. assembly joints, can be ef-
ficiently identified and processed for FE simulations. Here,
the focus is placed on the reasoning process enabling the
characterization of functional configurations as well as how
geometric models of components get structured from the
identification of their geometric interfaces.
The remainder of the paper is organized as follows. In

Section 2, we discuss the related work about assembly mod-
eling. Section 3 analyses the content of DMUs and high-
lights the geometric entities at the basis of the reasoning
process. Then, Section 4 introduces the concepts of state,
design rules and sets the principles of the qualitative rea-
soning process. Section 5 focuses on the effective computer
aided reasoning process using graphs and ontologies. Fi-
nally, Section 6 describes the implementation and illus-
trates the results currently obtained.

2. Related work

Assembly models have been studied and approaches
have been proposed throughout the development of solid
modeling concepts. Essentially, assembly models have been
proposed for design and manufacture applications [5–7]
with recent applications to collaborative design. With
the development of features, approaches set assemblies
as components related to each other through geometric
constraints [8]. These approaches share a common de-
nominator where assemblies are described as geometric
models enriched with technological up to functional data.
However, the closer the functional information, the higher
the requirement to obtain external information to CAD
environments and the greater the need of user interactive
input during a design process. Though these additional
informations are mandatory in a design process, it does
not appear efficient if incorporated into a preparation pro-
cess for FE simulation where time reduction is critical to
incorporate simulations into a PDP. If they were available
at the level of FE simulation, a dedicated approach could
be set up to process them but companies are not currently
able to set up a digital representation of these data that
is connected to the DMUs they produce with CAD sys-
tems. Within this framework, Roy and Bharadwaj [9] set
up a design approach to connect functions to 3D geometry
using a Part Function Model (PFM). There, they address
the relationships between function, behavior and geometry
of a part in a top-down manner from function to geometry

to obtain parts from functional specifications. The PFM
described requires up to low level functions that connect
part boundary faces to function since the behavior model
builds up on interfaces between parts, i.e. contact sur-
faces to position parts with respect to each other. At the
level of complex assemblies with hundreds to thousands
of parts, the amount of complementary data defining a
behavioral model becomes too tedious to add, and recent
approaches [6] reduce the description of junctions between
components to global parameters describing bolted and
riveted connections without referring to the individual
surfaces of each bolt or rivet. This fits well with a design
process but simulation objectives may require a detailed
representation of interfaces when the purpose is to assess
the stress field distribution in a bolted connection with
tens or hundreds of bolts.
Developments of ontology-based approaches take advan-

tage of new capabilities to structure concepts and connect
them with component models [7,10] or at the level of 3D
geometry entities [11–13]. Some of these approaches have
been applied to assemblies [7,12,13] and can take advantage
of reasoners to set up inference rules to ensure the consis-
tency of the assembly description or extract information
that is not readily available in the dataset describing an as-
sembly. In [7,12], there is no direct connection between the
ontology content and the 3D model of components. Here,
ontologies support a design process where the engineer gets
consistent information in a collaborative context but the
ontology does not connect to boundary entities of compo-
nent geometric models. Barbeau et al. [13] cover a larger
description of a product with an ontological description in-
corporating the geometry and structure levels as available
through STEPAPIs [14,15] up to the functional description
that can be inserted through ontological representation of
the Core Product Model (CPM) [16]. The authors showed
that not all concepts of STEP could be rigorously expressed
using OWL standard [17] leading to limitations in detecting
inconsistencies. If CPM is able to relate component func-
tions to form features, the content of the CPM reflects the
designers’ choices to determine the level of product features
inserted in this model and its level of connection with each
component geometry. Consequently, there is no guarantee
that functional information can be available downward to
the level of B-Rep entities of each component. Reasoning
capabilities associated with ontologies are set up to browse
the whole assembly ontology but they are not applied to
derive new functional information or reinforce the connec-
tion between function and geometry in an assembly model.
Across the tasks involved in FE simulations, specific op-

erators have been set up at the level of FE mesh genera-
tion [18–20] to process contact areas between components
either from B-Rep CADmodels [18] or faceted ones [19,20].
These operators are helpful to reduce the amount of inter-
active processing to transform component boundaries into
geometric models suited for meshing but they are far from
the function level to avoid repetitive selection operations
and faceted representations can hardly be efficient to pro-

2

Fig. 1. Two structural sub assemblies of an aircraft wing structure
and a detail showing the bolted connections between components
(courtesy EADS IW).

cess DMUs during a design process.
Consequently, we can observe that assembly processing

is often addressed in a design context of top-down approach
from primary product function point of view and there is
no low level robust connection between components’ geom-
etry and low level functions. Additionally, the reasoning
capabilities of ontology-based approaches are exploited to
browse existing assembly data and derive data not readily
available. These reasoning processes do not extend further
than relative positioning constraints between components.

3. DMU content, component shapes and

conventional interfaces

3.1. DMU content and objectives

In the industrial context and especially when products
addressed are rather complex, DMUs are reduced to a set
of components as standalone objects in a common reference
frame, where positioning constraints between them are not
available. A DMU is an extraction from the PDMS (Prod-
uct Data Management System) at a given time. Indeed,
the evolution of a PDP cannot maintain interfaces between
the geometric models of components, e.g. if a component is
removed, the resulting loss of consistency in the assembly
geometric constraints can propagate through a rather large
amount of components. The corresponding geometric con-
straints have to be removed, hence the choice to locate all
components into a global coordinate system. Consequently,
each component is positioned independently of the others,
which increases the robustness of the DMU with respect to
repeated modifications. Figure 1 is an example of a complex
structure of an aircraft wing. Mating conditions between
components [6,8] are not available.
The hierarchical structure of the assembly as described

in a PDMS or in a CAD assembly module is a logical de-
composition of the assembly that does not reflect precisely
the contact or, more generally, the interfaces between the
components. The text-based annotation of each component
is not a reliable source of semantic informations attached

(b)

Thread axis(a) (c)

(d)
Connection
idealization

Shape
transformations

Friction areas

Fig. 2. Example of adaption from DMU to FE analysis model: a) a

3D view of a bolt in a DMU, b) a cutout of a bolt and its neighboring
components, c) simplified bolt for detailed stress distribution with
friction between plates and discretization with a hexahedral mesh,
b) idealized bolt and plates to set up a global model for the bolt as
a connector.

to components and sub-assemblies. This information may
not be stable across a DMU and its content is often irrele-
vant or rather incomplete with respect to one or more com-
ponent functions. Indeed, the text-based annotation often
contains a code, specific to a company, a project or a prod-
uct, which does not contribute to a robust connection be-
tween a component and its function. Even a screw 1 des-
ignation does not tell much about its function, i.e. is it a
cap screw, a set screw, an adjusted cap screw, . . . This
text-based annotation does not connect explicitly to some
of its faces or edges reflecting the component’s functions
that rely on the geometric interfaces between the compo-
nent and its neighbors. Consequently, there is no large dif-
ference between a DMU content as obtained from a PDMS
and its description as available from a STEP file, which is
the approach adopted here as input description of a DMU.
To adapt a DMU to a FE analysis, the engineer con-

forms to simulation objectives (see examples in section 1)
to express shape transformations leading to detail removals
and/or idealizations, i.e. dimensional reductions of compo-
nents. As an example, bolted connections can be simplified
to revolution volume models suited for hexahedral meshing
(see Fig. 2a, c) or idealized as beam connectors tightening
idealized plates (see Fig. 2b, d). To automate such trans-
formations, mandatory information is which components
are cap screws, nuts? which components are tightened by
each cap screw? where are located the interfaces between
screws and plates? what is the location of threads’ axes?
. . . Because component interfaces are numerous and close to
the physical ones on the real product, the designmethodolo-

1 In order to distinguish clearly the mathematical concept of screw
from the real components, all designations of mechanical components
will be written using the typewriter typeface, e.g. screw.

3

(a) (b) (c) (d)

Fig. 3. Examples of components with their real and digital shapes: a)
a real screw, b) a digital model of a screw without the representation

of its thread, c) a cutout of a real ball bearing, d) a cutout of a
digital model of ball bearing (all the components of the bearing

are merged into one ring-shaped volume).

gies relating function, behavior and shape or structure [21–
23] can be applied to a small number of interfaces to con-
nect shape to function. It is the purpose of a qualitative
reasoning process (see Section 4) to exploit these relation-
ships through component behaviors and answer the previ-
ous questions.

3.2. Component shapes and conventional interfaces

Prior to the presentation of the reasoning process en-
riching component information, it is important to analyze
further the content of DMUs and some principles used to
define the shape of components in a design context. The
observations of Section 3.1 reduce the robust input data to
the geometric model of each component and its location in
3D space. It is now important to observe that the shape of
components taking part to a DMU may differ (even signif-
icantly) from that of the real object (see Fig. 3). This fact
refers to the following definitions.
Real shape of a component C: it refers to the real phys-

ical shape of C.
Digital shape of C: it refers to one possible volume or

surface or line model or any of their combinations repre-
senting C in a DMU. Here, it is simply designated as a
shape. Compared to the Real shape of C, its shape derives
from a simplification process also called idealization.
The selection of a shape forC may be originated by either

company standardization or the use of component libraries,
e.g. Traceparts (www.traceparts.com), or designer’s choices
or a combination of some of these reasons, to speed up
a modeling process. Consequently, real products contain
components that interact with each other through inter-
faces that can only fall into the categories of: contact (when
two component boundaries ∂C1 and ∂C2 touch each other)
or functional clearance ǫ (when subsets of ∂C1 and ∂C2 are
located at a distance d ≥ ǫ): this is no longer sufficient to
analyze DMUs. Indeed, the digital shapes of components
can generate interferences in a DMU even though their lo-
cations are correct and coincide with the position of their
corresponding real component.
As a result, a consistent DMU, i.e. a DMU where all its

digital components coincide with the locations of their as-
sociated real components, contains digital components that
can be related to each other through interfaces. An inter-

(a) (b)

Fig. 4. An example of CI of type interference between a screw and
an assembly component: a) CI location between the screw and the
assembly component, b) volume of interference defining their CI.

face between two components C1 and C2 of a DMU fall
into one of the three following categories: contact, interfer-
ence, clearance, which clearly extends the configurations
addressed in most of the existing approaches [8,9,12,7,24].
Here, we assume that processed DMUs are always consis-
tent, hence interferences are acceptable if they exist. Inter-
faces between components are key information to charac-
terize the context or environment of a digital component.
From now on, components designate digital components if
there is no ambiguity in its usage context.
Though there is no national or international standards

stating the digital shapes that ought to be associated to
the real shape of C, the study of a range of DMUs leads to
a conclusion where conventions rather than standards are
effectively used at the level of a company or even across
companies. These conventions produce invariants. There-
fore, we can consider that interfaces between components
C1 andC2 are indeedConventional Interfaces (CIs) still be-
longing to the categories: contact, interference, clearance.
Interfaces between components, hence CIs, contribute to

the relative location of these components, to the transmis-
sion of forces/moments between them and/or to their rela-
tive movements, i.e. what the components are for. CIs are a
subset of the result of a product design process, hence they
contribute to functions, at a low level. Indeed, CIs contain
functional surfaces.
As an example of CI, let us consider a simple, though

very frequent, configuration of a screw and a nut or a com-
ponent with a threaded hole. Because the shapes of these
real components are simplified with the removal of their
threaded areas, they just feature cylindrical areas. Now,
their diameters are conventionally chosen as the outer di-
ameter of the thread for the screw and the drilling hole di-
ameter for the assembly component. The resulting CI is a
cylindrical interference forming a ring volume (see Fig. 4).
This DMU analysis shows that design methodologies us-

ing DMUs should extend from function, behavior, struc-
ture to incorporate the shape of component interfaces as
contributors to the relationships between these concepts.

4. Principles of the qualitative reasoning process

Design methodologies [21–23] refer to the concept of be-
havior as a connector between function and shape. Here,
the purpose is to define the content and structure of a rea-

4

soning process, using geometric information as input, and
producing functional information as output that is tightly
connected to the boundary, i.e. faces, edges, of the compo-
nents so that the components can be subsequently submit-
ted to shape transformations as required for FE analyses.
This reasoning process is set prior to FE analyses with the
objective of shortening the FE preparation process, hence
a process of qualitative type is well suited since it reduces
the amount of required input data.
The process content takes into account the multiple in-

terpretations of interfaces and it is of type bottom-up. As
a qualitative process, it can be compared to the reasoning
process performed when assembly drawings were analyzed
in the past: their analysis was purely conducted without
computations and performed with a large amount of geo-
metric information. Consequently, the engineer’s reasoning
process is based on observations characterizing the relative
behavior of components. A DMU analysis is comparable
to assembly drawings and we postulate the existence of a
qualitative reasoning process. However, the purpose is not
to generate a single functional interpretation of an assem-
bly and its components but to derive all the possible and
meaningful ones available with the input information given
by the user.
An output of the reasoning process holds in the func-

tional designation of a component. It is defined as:
Functional designation (FD) of C: it refers to a text-

based annotation TC of C such that TC uniquely identi-
fies the function of C, independently of its dimensions and
shape. TC is a member of the taxonomy Tfd associated with
the DMU. Tfd contains a collection of FDs of interest for
the analysis of this DMU. TC is connected to the geomet-
ric entities of ∂C contributing to the interfaces meaning-
ful for TC and hence, to the neighboring components of C
contributing to TC .

4.1. Conventional Interfaces

As mentioned in Section 3.1, each DMU component Cj

should be in geometric interaction with at least one other
component. We call such an interaction a CI (see sec-
tion 3.2). Cj is a B-Rep CAD volume. Originally, CIs par-
ticipate to functions to position, transfer forces between,
enable relative movements between components. Most of
these elementary functions are obtained through surfaces
of type plane, cylinder, cone, sphere, torus, collectively
designated as Sf . Currently, Sf is the set of surfaces that
is processed to define the CIs. Sf covers a wide range of
interfaces between mechanical components and is readily
available from the STEP file containing the DMU.
The geometry processing of a DMU to obtain its CIs is

not described in details since the focus is placed here on the
reasoning process. Only section 5.1 describes shortly some
aspects of the extraction of CIs from a DMU.
A CI can be a contact, where the two volumes repre-

senting components C1 and C2 share common boundaries,

valid invalid
(a) (b)

Fig. 5. (a) valid and invalid examples of surface contacts with mul-
tiple connected components, (b) Non-manifold interference (in red)
obtained as interaction between a rivet and two components.

without sharing any volume. A contact is two-dimensional,
i.e. a surface contact, or one-dimensional, i.e. a curvilinear
contact. More precisely, C1 and C2 can produce different
categories of common domain: most often ∂C1 ∩ ∂C2 = S,
S ∈ Sf and S contains only one connected component; if S
contains more than one connected component Si then ∀Si,
Si ∈ Sf where Sf designates a unique instance of surface,
i.e. same type, location in space and intrinsic parameters
(see Fig. 5a). Configurations with multiple components be-
longing to different instances of Sf relate to the configu-
ration of ‘double contact’ or even ‘multiple contacts’ (see
Fig. 5a), which is inconsistent.
Alternatively, a CI can be an interference, where compo-

nents C1 and C2 share a common domain. Interferences are
3D domains deriving from the relative location of C1 and
C2, however, they can exhibit non-manifold configurations,
even though the original geometric model of C1 and C2, re-
spectively, is manifold (see Fig. 5b). Here, the taxonomy of
CIs is restricted to manifold domains, in a first place.
Clearances are not defined. Indeed, the present reasoning

process does not require their extraction from the DMU,
which is one of its features.
Whereas contacts often reflect realistic physical config-

uration, interferences are only idealized representations of
reality. As a matter of fact, geometric interactions, either
contacts or interferences are no more than conventions that
engineers use, and they unevenly reflect reality and how the
product should be manufactured. Based on the practices
observed in DMUs and an analysis of the content of com-
ponent libraries, a taxonomy of CIs, Tci, has been set up
to cover the basic interactions between components. Fig. 6
illustrates the content of Tci. Tci does not cover all the pos-
sible configurations to shorten its description.

4.2. Functional Interfaces

Starting from CIs and their interpretations structured
into Tci, the next step is to associate at least one or more
functional meanings to each class of Tci. The functional
meanings that can be assigned to a given CI derives from
the conventions adopted during the generation of a DMU.
Compared to the real shape of each component, they char-
acterize some shape idealization of components.
The conventional representations used can be stated as:

– Cylindrical fittings. A snug fit is represented with the
same nominal diameter for its shaft C1 and housing C2,
i.e. its negative clearance is always small enough com-
pared to the nominal diameter of the cylinder to idealize

5

C1 and C2 to the same diameter. Dimensional tolerances
of C1 and C2 are regarded as attributes that may or may
not exist in their native CADmodels and are regarded as
non available. Indeed, they don’t exist in the input STEP
file. A loose fit with a clearance contributing to a guid-
ance between C1 and C2 is represented with the same
nominal diameter. The observation stated for tolerances
of the snug fit applies also here. If the clearance between
C1 and C2 is such that the two cylinders never touch each
other under regular working conditions, there is no guid-
ing function connecting C1 to C2 and their difference in
diameter exists in the DMU. The previous observations
about their diameter tolerances still holds here,

– Cylindrical interferences. These configurations occur un-
der the following idealizations. Threads are not repre-
sented in digital components. They are idealized into a
cylinder of diameter equal to the external diameter of the
shaft De and a cylinder of diameter equal to the drilling
diameter of the housing Dd. This common convention
produces effectively a cylindrical interference De > Dd,
independently of the thread dimensions since this in-
equality always holds. Spline profiles may or may not be
part of the digital shape of C according to the designer’s
choice and the specific type of spline fit. Throughout this
paper, a spline designates a mechanical link. If the real
shape of the spline profile appears in the digital shape of
C, it will produce contact interfaces and, consequently,
it does not fall into the current class. If the spline profile
is idealized into a simple cylindrical surface, its diame-
ter on the shaft is set to the head diameter of the spline
profile De and its diameter on the housing is set to the
foot diameter of the spline profileDf . This configuration
produces a cylindrical interference with De > Df , inde-
pendently of the value of the spline nominal diameter,

– Planar fit. It is always a unique interpretation of planar
contact. If C shares two planar CIs, opposite to each
other, with other components, the interpretation is part
of the reasoning process and does not stand for a class
FI. Anyhow, its interpretation should be similar to that
of cylindrical fittings,

– Spherical fit. There is always a unique interpretation of
spherical loose fit for this CI,

– Conical fittings. Two functional representations are de-
rived from a conical fit that are always based on a coni-
cal contact. The distinction between them relates to the
adherence phenomenon, which depends on the apex an-
gle of the cone and the adherence coefficient between C1

and C2. This coefficient is obtained from the constitutive
materials of C1 and C2 to determine the angle threshold
between a loose fit and an adherent fit. Assuming that
these materials are unknown, which is generally the case
for DMUs acquired through STEP files, both functional
interfaces can take part to the reasoning process.

For the sake of conciseness, conventional representations
related to curvilinear contacts are not addressed here. As a
result, tori have not been addressed since they contribute
only to configurations of curvilinear contacts.

CI

Interference Contact

Manifold Surface Curvilinear

Cylindric Cylindric Conic Planar Linear Circular

Loose

Shaft

Bushing

Planar

Support

Conic

Support

Linear

Support

Radial

Circular

Contact

Axial

Circular

Contact

Adherent

Link

Tight

Shaft

Bushing

Threaded

Link

Complete

Link
Support

FI

Spline

Link

Spheric....

....

....

....

Fig. 6. The taxonomies Tci of CIs and Tfi of FIs derived from Tci,
partially illustrated. Tci is represented in light blue and Tfi in pink.
Dotted lines between the leaves of Tci and Tfi illustrate the multiple
functional interpretations that originate leaves of Tfi from leaves of
Tci.

The corresponding collection of FIs ends up with the def-
inition of another taxonomy, Tfi. Fig. 6 illustrates the tax-
onomy Tfi derived from Tci and the conventional represen-
tations of elementary functions. The possible multiple FIs
associated with one CI, due to the above conventions, is il-
lustrated in Fig. 6 with the dotted lines connecting leaves of
Tci to leaves of Tfi. Because it is hypothesized that DMUs
are consistent with the above conventional representations,
there must be no interpretation such that an instance of leaf
of Tci connects to more than one instance of a leaf of Tfi.
Also, a consistent DMU will not exhibit interfaces falling
outside the leaves of Tci.

The leaves of Tfi, in addition to the geometry of the in-
terfaces obtained from the leaves of Tci contain the desig-
nation of each FI. Starting from this first attachment of
functional information, it is now possible to set up behav-
ioral models and design constraints.

4.3. Behaviors

Now, the FIs need to be processed to filter them out and
retain their appropriate interpretation. To this end, the
concept of behavior aims at bridging the FIs and the FD of
each component C. Behaviors can cover a wide spectrum of
physical phenomena. In the scope of FE simulations inter-
action forces between components, i.e. internal forces tight-
ening components among each other are key features that
can be exploited to define behavioral models.

If the concepts of behavior and function as addressed
in [21,22,25] refer more or less explicitly to state variables,
the concept of product or DMU state is not explicitly used
as part of a design process. Here, the concept of DMU state
is a major concept used to characterize a DMU behavior.
Its definition is as follows:

State of a DMU: It describes a physical and qualitative
behavior of a DMU through equilibrium equations. A be-
havior law is applied to each component of the DMU where

6

Table 1
Qualitative vector values.

Value Symb. Interpretation

Not Null 6= propagates internal forces / moments in either
direction.

Null 0 doesn’t propagate any internal force / moment.

Strictly Positive > propagates internal forces / moments in the
positive direction only.

Strictly Negative < propagates internal forces / moments in the
negative direction only.

Arbitrary ∗ may propagate internal forces / moments in
either direction

each interface is assigned a possible FI. This behavior law
helps characterize the physical objective of the state and
dualities between geometry and mechanics are used to set
the parameters of this behavior law from the FIs. Interface
shapes and screws describing the interaction forces between
components are dual and exemplify these dualities.
The purpose of a state is to filter out FIs to extract con-

sistent functional interpretations so that FIs attached to
each C represent an effective possible function of C. Apply-
ing the behavior law successively to each component un-
til a consistent result is obtained, validates the FIs used
in this DMU state. Otherwise, unsuccessful applications of
the behavior law reject some candidate FIs of C.
A first state contributing to FE analysis, Sse, is based

on the objective expressing that a DMU, considered in a
configuration at ‘rest’, is such that each of its component
must satisfy qualitatively the static equilibrium equations,
i.e. no component must fall apart in the DMU. Here, the
behavior law is the static mechanical equilibrium equations
applied to each component.
To perform the corresponding DMU analysis, a screw

{FCi/C | MCi/C} with qualitative content is assigned to
each FI of a component C. The content of this screw de-
pends on the meaning of the FI and the duality between
interaction forces and the geometry of real interfaces be-
tween a couple of components. The equilibrium equation
for C writes:

Σi{FCi/C | MCi/C} = 0. (1)

To process these equations in a qualitative manner, screw
components have values among the closed set defined in
Table 1 and the equilibrium eq. 1 is expressed using these
set of values. Though the multiple FIs attached to each CI
produce a combinatorial configuration, advantage can be
taken from the design criterion. One of its purposes is to
put forward fasteners which are characterized by a small
number of FIs. Consequently, eq. 1 is applied, in a first
place, to the components having the smallest number of CIs
whose FIs contain cylindrical interferences because these
interferences generate FIs that can be threaded links, the
most common feature of fasteners.
Based on the content of FIs and the qualitative equilib-

rium equations, it can be observed that a component C

containing two CIs; CI1 of type planar contact and CI2 of
type cylindrical interference with its axis orthogonal to the
plane (see Fig. 7), produces a unique solution of FIs with a

C

C1

C2

x

Fig. 7. Static equilibrium of C in a configuration of tightening func-

tion.

planar support and a threaded connection. The qualitative
screws of the FIs enumerate respectively for the threaded
link and the spline fit of CI2:

TC1/C = { 6= ∗ ∗ | 0 ∗ ∗ } and TC1/C = { 0 ∗ ∗ | ∗ ∗ ∗ }
(2)

TC2/C = {> 0 0 | 0 ∗ ∗ } (3)

The equilibrium equations written in the reference frame,
along its x axis, containing the axis of CI2 produce respec-
tively:

6= + > = 0 or 0 + > = 0 (4)

showing that the FI of type spline fit cannot achieve the
static equilibrium of C. This configuration discards the
spline link FIs to uniquely characterize C with a tightening
function. The above example is also a simple illustration of
the qualitative operations set up to process the static equi-
librium equations since the conciseness of this description
prevents from an exhaustive description of the qualitative
screws for all FIs and the all set of rules for the addition of
screw components.
If Sse can generate some one-to-one mapping between

CIs and FIs, as above, it is not always the case and other
states are complementary to reduce the number of FIs and
improve the functional description of components.
Another state, Sif , is also used to filter out some FIs

and carry on the characterization of component functions.
Considering that threaded links act as internal force gen-
erators, Sif characterizes the propagation of these forces
throughout the DMU. The components of a DMU defining
a structure must be subjected to internal forces to be tight-
ened together and hence, avoid any relative movement. Sif

aims at defining the FIs belonging to fasteners like screws
and rivets in a DMU that generate internal forces. To this
end, the principle of Sif analyzes every FI of type threaded
link, FItl, studying qualitatively the static equilibrium of
the corresponding component,C, starting with components
having the smallest number of FIs and threaded links, i.e.
two for screws or nuts. The equilibrium equations of C
enables the qualitative determination of the force direction
related to FItl, i.e. it replaces 6= either by > or < , and
the identification of another FI of C, FIc, that sets a force
opposite to FItl. Then, this information is propagated to
the static equilibrium of the adjacent component sharing
the threaded link with C. This propagation process is re-
peated until the force set by FItl reaches the component
C ′, sharing FIc with C.

7

At that point, one or several connected closed loops of
components in the DMU have been identified that takes
part to the tightening function initiated by FItl. The same
basic principle can be adapted to other configurations. As
an example, it is necessary to process fasteners configura-
tions like studs where two threaded links exist and the ini-
tial static equilibrium of a stud, C cannot decide whether
the threaded forces produce either a compression or a trac-
tion in C. In this case, both configurations are initiated to
enable the determination of the correct one and the corre-
sponding loops of components.
Given the description of Sif , this state is clearly indepen-

dent from Sse, which justifies that the functional informa-
tion gained through Sif is effectively a complement of Sse.

Other behaviors may take place in a DMU, like relative
movements of components when a DMU is a mechanism.
To carry on reducing the set of FIs attached to each com-
ponent, a kinematic state has been defined that is indepen-
dent of the previous states. It represents the DMU in work-
ing conditions and its objective is to assign components to
kinematic equivalence classes and extract kinematic chains
to complement the behavior of components. Relative de-
grees of freedom are further means to process a larger range
of FDs. This is not detailed for sake of conciseness.

4.4. Design constraints

Behaviors characterized through states express different
physical interactions between components and assign them
FIs. On a complementary basis, FIs must conform to de-
sign constraints. Design constraints refer to dependencies
between FIs that contribute to eliminate some FIs. Based
on the current taxonomy of FIs, there is no exhaustive list
of such constraints yet. Here, the intent is to illustrate some
of them that have been identified and relate to the concept
of fastener for FE simulations.
A first design constraint, DC1, addresses the compatibil-

ity between ‘threaded link’, FIt, and ‘spline fit’, FIs, on a
component C. Let us express DC1 when C is a shaft. Here,
FIt and FIs are co-axial and span an interval L along the
axis ofC. Indeed, these FIs cannot be geometrically located
on C and have the same nominal diameterD if they are ad-
jacent, on either of the side of L, to a geometric feature of C
having a diameter greater or equal to D. Fig. 8 illustrates
such a configuration. DC1 expresses the fact that mounting
components on C that exploit FIt and FIs is not possible
and, if FIt and FIs are adjacent to each other, the man-
ufacture of C wouldn’t be possible. A similar constraint
could be set up when C is a housing.
DC1 is useful when fasteners use functional solutions

with nut and counter-nut to discriminate FIs satisfying Sse

where the CIs related to the nut and counter-nut can be as-
signed (FIs, FIt) or two FIt, respectively. Therefore, DC1

filters out the (FIs, FIt) configuration.
A second design constraint, DC2, focuses on dependen-

cies between ‘threaded link’, FIt, ‘cylindrical snug fit’,

Mergeable
facesL

Cylindrical
interference
(threaded link)

(a) (b)

Fig. 8. An example of layout of FIs falling in the scope of a design

constraint. The spline fit is represented realistically for convenience
purposes. a) a cutout highlighting the incompatible location of the
cylindrical interference with respect to the spline link; b) examples
of faces that can be merged to produce maximal faces. The merged
configuration is depicted in (a).

FIsf , ‘cylindrical loose fit’, FIlf , and ‘planar support’,
FIps, on a component C of type shaft. Here, several FIsf
or FIlf exist that are co-linear and adjacent to each other,
FIt is also co-linear and adjacent to FIsf and FIps is ad-
jacent to FIsf opposite to FIt. DC2 can be stated as: all
the cylindrical fits are of type FIlf . DC2 expresses that
the tightening effect of FIt doesn’t need to be reinforced
by the FIsf interfaces. To a larger extent, this constraint
expresses that a component is designed with elementary
functions that are clearly assigned to a single component,
i.e. the effect of FIt is sufficient to tighten all the compo-
nents attached to FIlf .
DC2 is useful when fasteners are of type adjusted bolts

where screws are mounted with loose fit.
As illustrated above, design constraints form a neces-

sary complement to the behaviors expressed by states. The
identification of design constraints is still at a preliminary
stage. It can be observed that the dependencies between
FIs expressed by design constraints inherit also from the
CIs, hence their dependency with respect to the engineer’s
representation choices of interfaces in DMUs.

4.5. Functional Designations of components

The concept of FD has already been introduced at the
beginning of Section 4. To be able to assign a FD to each
component, a taxonomy of FDs, Tfd is required that can
connect all the FIs of a component to a unique functional
concept that can characterize all the components, i.e. in-
stances, sharing the same function.
Tfd should cover all the categories of functions of com-

ponents in a DMU. Currently, it has been restricted to fas-
teners, which means that only a subset of components in
a DMU can be assigned FDs. Though Tfd is partial only,
there may be influences of other categories of components,
not described in Tfd, on the correct assignment of FDs for
the components that would belong to these categories but
are indeed assigned to one of the classes in Tfd because

8

Fig. 9. A partial description of the structure of Tfd.

these components have common properties with classes in
Tfi and the existing states and design constraints are not
able to separate these components from the classes in Tfd.

Given the above remark, it can be observed that the
behaviors and design constraints described at Sections 4.3
and 4.4 are necessary conditions to correctly identify the
classes of components in Tfd but they are not sufficient.

The partial content of Tfd is illustrated in Fig. 9. It
can be noticed that components having assigned a class in
Tfd benefit from an entire functional description with in-
terfaces having functions assigned, these functions being
clearly identified through faces, edges and vertices on the
boundary of these components. In addition, these compo-
nents having been processed through states, some of their
behaviors are now available, which can be used for FE sim-
ulation preparation to apply shape transformations and
generate meshes as efficiently as possible.

5. Computer aided qualitative reasoning process

Section 4 has described the major concepts of the pro-
posed approach to analyze DMUs and derive FDs of com-
ponents from their CIs. These concepts have been stated
independently of any category of reasoning process or of
type of mathematical logic. Here, the purpose is to point
out some of the issues addressed to effectively structure the
reasoning process. Depending on the category of reasoning
process, existing software tools are used as much as possi-
ble like ontologies [26,17] and their associated reasoners [27]
because qualitative approaches and functional information
are well suited to use logics.
In this section, we highlight some technical aspects of

our method at some of its elementary phases. Figure 10
depicts different stages of our approach. The input is a
pure geometric description of a product as STEP [14,15]
file containing a B-Rep model.

5.1. Maximal edges/surfaces and geometric interfaces
detection

B-Rep CAD models don’t represent product’s shape
uniquely; that means the same volume can have several
different valid representations under B-Rep modeling.
This originates partly from the design process where any
face can be subdivided into smaller ones during a design

Fig. 10. Data and process flow diagram of the reasoning process.

process and partly from modeling constraints set by B-
Rep modelers. Fig. 8b illustrates these two origins with
faces referenced on the shaft of the assembly. The same
phenomenon applies to edges also. To overcome this incon-
venience, we first generate the so-called maximal surfaces
and maximal edges representation of DMU components.
For each component, this is accomplished by merging all
adjacent surfaces and curves that share the same geomet-
ric properties, i.e. type, 3D location, intrinsic parameters
(Fig. 8a illustrates a result of this process). This is manda-
tory to correctly define the interfaces and detect some
inconsistencies (see Fig. 5a).
Having generated the maximal faces and edges, it makes

way for the determination of geometric interactions be-
tween volumes that define CIs. A naive approach for the
detection of geometric interfaces is to use boolean oper-
ators between volume pairs of the DMU at hand. This
can be enhanced by using the elimination of obvious nega-
tive pairs whose bounding boxes do not interact with each
other. However, not only interferences but also surface and
line contacts are needed but boolean operators don’t bring
the right level of robustness and efficiency, as it has been
evaluated using the OpenCascade CAD library [28]. This
technique however fails short to deliver accurate interface
zones. This shortage requires specific approaches but they
are not described here for sake of paper length.
The outcome of this phase is represented as a non-

oriented binary graph referred to as Conventional Interface
Graph (CIG): GCI = (Nc, Ai). Here, nodes Nc are DMU
components and arcs Ai are interfaces. This is a mathe-
matical model upon which we build our reasoning phases
to come. Initially, graph arcs, i.e. CIs, contain information
about only the geometric interaction between two nodes.
They define instances populating Tci.

5.2. Initialization of knowledge base and reducing the
number of interpretations

CIs are then enriched by functional interpretations to
produce FIs and conform to the connections between Tci
and Tfi (see Fig. 6). Thus, one entry of Tci may lead to
more than one instance of Tfi. This is due to the idealized
nature of some CIs (see Section 4.2).
GCI , now enriched with instances of FIs located at Ai,

reflects our initial knowledge about the assembly. Uncer-

9

tainty in the knowledge base comes from the fact that some
CIs still hold more than one FI, thus, all the FIs of a com-
ponent C can’t yet contribute to instantiation of C’s FD.
To reduce such uncertainty, additional rules or/and facts,
i.e. behaviors and design constraints, are considered.
States Sse, Sif and design constraints, DC1, DC2, come

to clarify ambiguities by reducing the number of interpre-
tations per CI to ideally one. These states are hypotheses
considered to hold true during a specific stage and express
an elementary behavior of some DMU components. Those
hypotheses are formed as rules that add up to our knowl-
edge base and contribute to the elimination of FIs that con-
tradict one or more of those rules.
Two reference states have so far been identified and set

up, Sse, Sif . They share a similar use of qualitative static
mechanical analysis of DMU components hypothesized as
rigid bodies. However, the basic vector algebra required to
process the qualitative screws cannot be handled by reason-
ers connected to ontologies. Reducing the vector equations
to scalar ones at the level of eq. 1 can help reach the compat-
ibility with reasoners but processing large assemblies that
way may not be efficient as highlighted in [13] with the lim-
itations faced in expressing some STEP concepts and poor
performances that may occur. For these reasons, dedicated
algorithms have been set up to process Sse, Sif .
Each FI has a qualitative mechanical screw expressed in

a reference coordinate system specific to this FI. Since all
screws involved in the equilibrium of a component C must
be expressed in the same reference frame, these screws must
be subjected to vector field transformations, i.e.

{FOC
|MOC

}OC
= {FOF

|MOF
}OF

=⇒

FOC
= FOF

and MOC
= MOF

+OCOF × FOF

(5)

where OF and OC designate respectively the origin of the
reference frame of an FI and the origin of the reference
frame of C set up for all FIs. After this transformation, the
qualitative screws of FIs are referred to as absolute screws.

Special arithmetics have also been defined to allow op-
erations such as addition, subtraction, scaling (scalar mul-
tiplication), dot product, . . . between vectors with qualita-
tive component values.
An exhaustive search algorithm is presented in algo. 1.

It is based on Sse and returns all valid solutions to eq. 1,
eliminating invalid interpretations for each FI.
This algorithm traverses the GCI nodes, visiting each

node at least once, to study the component’s equi-
librium against eq. 1. All nodes of GCI are initially
marked as open, and thus still to be visited. Method
next open component() chooses the component with min-
imum cardinality, defined as the product of number of in-
terpretations over CIs of a component c: ||c|| =

∏
ci∈CIc

|ci|
where |ci| is the number of interpretations of ci. If two
components happen to have the same cardinality the one
with fewer interfaces is chosen. This heuristic helps pick-
ing components that have the potential to introduce more
information to the knowledge base than others, enhancing

Algorithm 1 Mechanical analysis

Procedure: analyse
for each component c do

mark c as open
end for

while there is still open component do

c← next open component
init screw ← {0|0}
initialize all interpretations as invalid
calculate sum(c, 0, 0, init screw)
for interpretations that are still invalid interpret do

interface← interpret’s CI
other ← interface’s opposite component
mark other as open
drop interpret

end for

if c’s cardinality didn’t change or c’s cardinality = 0 then

mark c as closed
end if

end while

Procedure: calculate sum(c, level, i, base)
if is arbitrary(base) = true then

mark all visited interpretations as valid
mark all interpretations to be visited from here as valid

else

if level = number of interpretations then

if is nullable(base) = true then

mark all visited interpretations as valid
end if

else

interface← level-th interface of c
for i = 0 to number of interpretations of interface do

interpret← i-th interpretation of interface
screw ← base+ interpret.screw
calculate sum(c, level + 1, i, screw)

end for

end if

end if

the reasoning performance.
Component’s equilibrium is studied through method

calculate sum(). If this study leads to the elimination
of some FIs, not only the state of the current component
stays open, also the opposite component of the eliminated
FI is marked open as well, even if it was closed before. This
is because the removal of one FI introduces new knowledge
that may in turn allow for more conclusion if equilibrium
against the components is questioned again. If no inter-
pretation is removed, that means that further reasoning
on the component is meaningless, since it will lead to the
same result, then it is closed.
The method calculate sum() traverses all CIs of a com-

ponent recursively, through a depth first graph search, com-
bining solutions and checking the validity of each against
eq. 1 at leaf level. This is done through the accumulation of
mechanical screws, where the screw of the currently visited
FI is added to a sum which is eventually checked whether
or not to be nullable; that is, whether or not eq. 1 may hold
true. If the answer is positive, all visited FIs are marked as
valid. To this end, a track of visited FIs is kept, though it
is not mentioned in the outlines of the algorithm.
An enhancement is introduced by the early determina-

tion of valid solutions when a screw represents a complete
link, determined by method is arbitrary(). In this case,
summation will always lead to a nullable screw value, thus
the recursion is interrupted, and all solutions still to be dis-
covered from this point are marked as valid.
Algo. 1 allows reasoning upon FIs. Results obtained at

this stage adds up to the ABox of our knowledge base, al-

10

Fig. 11. CIs of a DMU of hydraulic pump with 72 components.

ready containing Tci, Tfi, and Tfd in its TBox. The knowl-
edge base is represented as an ontology using OWL [17].
To classify components into Tfd, further reasoning should
be made. To this end, rules are set up that uniquely distin-
guish a class of components, and assign it an FD. Let us
exemplify the definition of a screw, shown in rule 1.
Rule 1 Any component that forms the inner part its FIt,
and has a FIps, such as the axis of FIt is orthogonal to
FIps, are said to be a screw.
This rule is expressed using a Description Logic (DL) and

reasoning using reasoners such as FaCT++[27].

6. Implementation and results

Here, we mention certain implementation details, then
we demonstrate results of our automated process.

6.1. Technical choices

For geometrical analysis of DMUs we used OpenCas-
cade[28] platform, that allows for the reading and extrac-
tion of geometrical entities and their properties out of a
STEP file. The knowledge base is set up using Protégé[26] in
connection to MyCorporisFabrica [29] to express our rules
and communicate with FaCT++ through its DIG interface.

6.2. Results

Fig. 11 shows the diversity of interfaces extracted from a
DMUof a hydraulic pump. Red areas indicate interferences,
green ones are surface contacts on Fig. 11. Line contacts
are indicated on Fig. 11(right) as a detail. Blue areas have
no status with regard to interfaces.
Fig. 12 illustrates a subset of an aircraft wing struc-

ture with 104 components. Fig. 12a indicates the geomet-
ric interfaces obtained from the DMU to form GCI . The
color code here is identical to Fig. 11. Fig. 12b shows the
results of the DMU analysis using the reference states,
design constraints, and semantic reasoning. Colored com-
ponents (rather than default gray) are identified fasten-
ers. Violet components are screws, while yellow ones are
counter-nuts and pink ones are nuts.
Fig. 13 shows a zoom into a cross section in the same

DMU of Fig. 12, along with the corresponding subgraph of
GCI . The graph shown depicts how validation against Sse

(a)
(b)

Fig. 12. A subset of a connection of a wing structure to a fuselage.
a)interfaces forming GCI , b) FDs of the components.

Cylindric Interference

Thread Link

Spline Link

#0

Planar Contact

Planar Support

Planar Contact

Planar Support

Cylindric Contact

Loose Shaft/Bushing Link

Tight Shaft/Bushing Link

#1

Cylindric Contact

Loose Shaft/Bushing Link

Tight Shaft/Bushing Link

Conic Contact

Conical Support

#2

Cylindric Contact

Loose Shaft/Bushing Link

Tight Shaft/Bushing Link

Planar Contact

Planar Support
#3

Cylindric Interference

Thread Link

Spline Link

#4

Planar Contact

Planar Support

#5

Internal Force Generator

Internal Force Cycle

Eliminated InterpretationA

Design Constraint

#2

#0

#1

#3

#4

#5

Fig. 13. Result of validation against reference states Sse and Sif .

enable the removal of interpretations such as Spline Link
between components #3 and #5, as they invalidate static
equilibrium. Further interpretations are eliminated thanks
to DC1, such as Spline Link between components #3 and
#4. Reasoning upon only Sse would not allow for such re-
jection. Validation against Sif shows how cycles that prop-
agate internal forces are reported, such a cycle is shown
as magenta-colored edges in the same figure. This example
demonstrates that components can be functionally identi-
fied. Threaded areas can be located on components to ini-
tiate idealizations, and fasteners are associated to the com-
ponents they tighten and to their interfaces. It is then pos-
sible to use this information to set up friction areas around
fasteners as needed for some FE models.

7. Conclusion and future work

It has been analyzed how component shapes, in assem-
blies, contribute to the definition of interfaces with their
neighbors. These geometric interfaces, CIs, can be con-
nected to functional interfaces: interpretations of these FIs
through conventional representations of components estab-

11

lish a connection between component shape and low level
functions of their interfaces. A CI gives birth to one or
more FIs. Though CIs and FIs can be structured into tax-
onomies, it has been demonstrated that complementary
functional information can be gained through the notion
of behavior addressed here qualitatively with the concept
of DMU states that can filter out FIs and provide higher
level functional information. As a complement to states,
design constraints taking care of dependencies between FIs
appeared also as a key concept to attach meaningful FIs to
each component so that it can be identified functionally by
a denomination out of a functional designation taxonomy.
This FD becomes a key information to apply specific shape
transformation operators to derive simulation models for
FE analyses.
The proposed approach, through a qualitative reasoning

process, takes advantage of ontology-based representations
and their associated reasoning capabilities. However, spe-
cific stages of the reasoning process cannot be expressed
with reasoners’ logic and need to be set as algorithms. The
reasoning process builds upon the shape, function, behavior
design methodologies with the concepts of CIs, FIs, FDs,
states and design constraints, in bottom-up manner to at-
tach functional information to DMU components.
Future work will extend the present approach with new

states and further investigations of the relationships be-
tween shapes, interfaces, states, design constraints and
functions.

Acknowledgments

This work is carried out in the framework of the ANR
project ROMMA (RObust Mechanical Models for Assem-
blies) referenced ANR-09-COSI-012 and the authors thank
the ANR for its financial support. This work is also sup-
ported by the ERC Expressive.

References

[1] A. Thakur, A. G. Banerjee, S. K. Gupta, A survey of cad

model simplification techniques for physics-based simulation
applications, CAD 41 (2) (2009) 65–80.

[2] C. S. Chong, A. S. Kumar, K. H. Lee, Automatic solid
decomposition and reduction for non-manifold geometric model
generation, CAD 36 (13) (2004) 1357–1369.

[3] T. T. Robinson, C. G. Armstrong, R. Fairey, Automated mixed
dimensional modelling from 2d and 3d cad models, Finite

Elements in Analysis and Design 47 (2) (2011) 151–165.

[4] C. Eckard, Advantages and disavantadges of fem analysis in
an early state of the design process, in: Proc. 2nd Worldwide
Automotive Conf., MSC Software Corp., Dearborn, Michigan,

USA, 2000.

[5] U. Roy, N. Pramanik, R. Sudarsan, R. D. Sriram, K. W.
Lyons, Function–to–form mapping: model, representation and
applications in design synthesis, CAD 33 (10) (2001) 699–719.

[6] K.-Y. Kim, Y. Wang, O. S. Muogboh, B. O. Nnaji, Design
formalism for collaborative assembly design, CAD 36 (9) (2004)
849–871.

[7] K. Rahmani, V. Thomson, Ontology based interface design
and control methodology for collaborative product development,
CAD 44 (5) (2012) 432–444.

[8] W. van Holland, W. F. Bronsvoort, Assembly features in
modeling and planning, RCIM 16 (2000) 277–294.

[9] U. Roy, B. Bharadwaj, Design with part behaviors: behavior
model, representation and applications, CAD 34 (9) (2002) 613–
636.

[10] Y. Kitamura, R. Mizoguchi, Ontology-based systematization of
functional knowledge, J Eng. Design 15 (4) (2004) 327–351.

[11] I. Horvath, J. P. W. Pulles, A. P. Bremer, J. S. M. Vergeest,
Towards an ontology-based definition of design features, in: Proc.
SIAM Workshop on mathematical foundations for features in

computer aided design, engineering, and manufacturing, 1998.
[12] K.-Y. Kim, D. G. Manley, H. Yang, Ontology-based assembly

design and information sharing for collaborative product

development, CAD 38 (12) (2006) 1233–1250.

[13] R. Barbau, S. Krima, S. Rachuri, A. Narayanan, X. Fiorentini,
S. Foufou, R. D. Sriram, Ontostep: Enriching product model

data using ontologies, CAD 44 (6) (2012) 575–590.
[14] I. TC184-SC4, ISO-10303 Part 203 - Application Protocol:

Configuration controlled 3D design of mechanical parts and

assemblies, ISO, 1994.
[15] I. TC184-SC4, ISO-10303 Part 214 - Application protocol: Core

data for automotive mechanical design processes, ISO, 2003.
[16] X. Fiorentini, I. Gambino, V.-C. Liang, S. Rachuri, M. Mani,

C. Bock, An ontology for assembly representation, Tech. rep.,
National Institute of Standards and Technology NISTIR 7436,

Gaithersburg, MD 20899, USA, July, (2007).
[17] OWL Web Ontology Language Overview (2004).

URL http://www.w3.org/TR/owl-features/

[18] B. Clark, B. Hanks, C. Ernst, Conformal assembly meshing
with tolerant imprinting, in: Proc. 17th Meshing Roundtable,
Pittsburg, USA, October 12–15, 2008, pp. 267–280.

[19] R. Chouadria, P. Véron, Identifying and re-meshing contact
interfaces in a polyhedral assembly for digital mock-up, Eng.
with Computers 22 (1) (2006) 47–58.

[20] R. Lou, J.-P. Pernot, A. Mikchevitch, P. Véron, Merging enriched
finite element triangle meshes for fast prototyping of alternate

solutions in the context of industrial maintenance, CAD 42 (8)
(2010) 670–681.

[21] J. S. Gero, U. Kannengiesser, The situated function–behaviour,
Design Studies 25 (2004) 373–391.

[22] A. Albers, N. Burkardt, M. Ohmer, Contact and Channel Model
for Pairs of Working Surfaces, In ElMaraghy, H. A., ElMaraghy,
W. H. (Eds), London: Springer, 2006, Ch. Advances in Design,
pp. 511–520,.

[23] D. G. Ullman, The mechanical design process, 2nd ed. New
York: McGraw-Hill, 1997.

[24] N. J. Mitra, Y.-L. Yang, D.-M. Yan, W. Li, M. Agrawala,
Illustrating how mechanical assemblies work, in: ACM
SIGGRAPH, 2010.

[25] B. Chandrasekaran, J. R. Josephson, Function in device
representation, Engineering with Computers 16 (2000) 162–177.

[26] Protégé (2012).
URL http://protege.stanford.edu/

[27] D. Tsarkov, I. Horrocks, Fact++ description logic reasoner:
System description, in: Int. Joint Conf. on Automated Reasoning
(IJCAR 2006), vol 4130 of LNCS, 2006, 292–297.

[28] OpenCascade CAD software library (2012).
URL http://www.opencascade.org/

[29] O. Palombi, G. Bousquet, D. Jospin, S. Hassan, L. Revéret,
F. Faure, My corporis fabrica: a unified ontological, geometrical
and mechanical view of human anatomy, in: Lecture Notes in
Computer Science LNCS 5903, 2009, pp. 207–219.

12

