Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics

Abstract : In this paper, we present a conservative finite volume scheme for the gas dynamics in Lagrangian coordinates, which is fast and nondiffusive. Fast, because it relies on an approximate Riemann solver, and hence the costly resolution of Riemann problems is avoided. Nondiffusive, because the solution is exact when the initial data is an admissible isolated shock, and discontinuities are sharply captured in general. The construction of the scheme uses two main tools: the extension to the barotropic Euler equations of the discontinuous reconstruction strategy presented in [Agu14], and the approximate Riemann solver of [CC13], which is exact on isolated admissible shocks. Numerical experiments in 1D and 2D are proposed.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, 50 (6), pp.1887 - 1916. 〈http://www.esaim-m2an.org/articles/m2an/abs/2016/06/m2an140105/m2an140105.html〉. 〈10.1051/m2an/2016010〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01073680
Contributeur : Nina Aguillon <>
Soumis le : vendredi 10 octobre 2014 - 12:05:37
Dernière modification le : mercredi 21 mars 2018 - 18:56:46
Document(s) archivé(s) le : dimanche 11 janvier 2015 - 10:46:12

Fichiers

ReconstructionARS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nina Aguillon, Christophe Chalons. Nondiffusive conservative schemes based on approximate Riemann solvers for Lagrangian gas dynamics. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2016, 50 (6), pp.1887 - 1916. 〈http://www.esaim-m2an.org/articles/m2an/abs/2016/06/m2an140105/m2an140105.html〉. 〈10.1051/m2an/2016010〉. 〈hal-01073680〉

Partager

Métriques

Consultations de la notice

231

Téléchargements de fichiers

93