N. Acestor, A. Zíková, R. A. Dalley, A. Anupama, A. K. Panigrahi et al., Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form, Molecular Cell Proteomics, vol.10, pp.110-006908, 2011.
DOI : 10.1074/mcp.m110.006908

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186196

J. M. Alves, L. Voegtly, A. V. Matveyev, A. M. Lara, F. M. Silva et al., Identification and Phylogenetic Analysis of Heme Synthesis Genes in Trypanosomatids and Their Bacterial Endosymbionts, PLoS ONE, vol.8, issue.21, 2011.
DOI : 10.1371/journal.pone.0023518.s024

J. M. Alves, M. G. Serrano, F. Maia-da-silva, L. J. Voegtly, A. V. Matveyev et al., Genome Evolution and Phylogenomic Analysis of Candidatus Kinetoplastibacterium, the Betaproteobacterial Endosymbionts of Strigomonas and Angomonas, Genome Biology and Evolution, vol.5, issue.2, pp.338-350, 2013.
DOI : 10.1093/gbe/evt012

M. Aslett, C. Aurrecoechea, M. Berriman, J. Brestelli, B. P. Brunk et al., TriTrypDB: a functional genomic resource for the Trypanosomatidae, Nucleic Acids Research, vol.38, issue.suppl_1, pp.457-463, 2010.
DOI : 10.1093/nar/gkp851

A. C. Azevedo-martins, M. L. Frossard, W. De-souza, M. Einicker-lamas, and M. C. Motta, : the influence of the endosymbiont, FEMS Microbiology Letters, vol.275, issue.2, pp.229-236, 2007.
DOI : 10.1111/j.1574-6968.2007.00892.x

I. Belevich and M. I. Verkhovsky, Oxidase, Antioxidants & Redox Signaling, vol.10, issue.1, pp.1-29, 2008.
DOI : 10.1089/ars.2007.1705

G. Bernard, B. Faustin, E. Passerieux, A. Galinier, C. Rocher et al., Physiological diversity of mitochondrial oxidative phosphorylation, AJP: Cell Physiology, vol.291, issue.6, pp.1172-1182, 2006.
DOI : 10.1152/ajpcell.00195.2006

U. Brandt, Energy Converting NADH: Quinone Oxidoreductase (Complex I), Annual Review of Biochemistry, vol.75, issue.1, pp.69-92, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142539

E. P. Camargo and E. Freymüller, Endosymbiont as supplier of ornithine carbamoyltransferase in a trypanosomatid, Nature, vol.156, issue.5632, pp.52-53, 1977.
DOI : 10.1111/j.1550-7408.1972.tb03473.x

K. P. Chang, C. S. Chang, and S. Sassa, Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes., Proceedings of the National Academy of Sciences USA 72, pp.2979-2983, 1975.
DOI : 10.1073/pnas.72.8.2979

Y. Du, G. Mclaughlin, and K. P. Chang, 16S ribosomal DNA sequence identities of beta-proteobacterial endosymbionts in three Crithidia species., Journal of Bacteriology, vol.176, issue.10, pp.3081-3084, 1994.
DOI : 10.1128/jb.176.10.3081-3084.1994

C. Edwards and C. Chance, Evidence for the Presence of Two Terminal Oxidases in the Trypanosomatid Crithidia oncopelti, Microbiology, vol.128, issue.7, pp.1409-1414, 1982.
DOI : 10.1099/00221287-128-7-1409

M. J. Esteves, A. F. Andrade, J. Angluster, W. De-souza, M. H. Mundim et al., Cell surface carbohydrates in Crithidia deanei: influence of the endosymbiont, European Journal of Cell Biology, vol.28, pp.244-248, 1982.

J. E. Freymuller and E. P. Camargo, Ultrastructural Differences Between Species of Trypanosomatids With and Without Endosymbionts1, The Journal of Protozoology, vol.25, issue.2, pp.175-182, 1981.
DOI : 10.1083/jcb.34.2.489

M. L. Frossard, S. H. Seabra, R. A. Damatta, W. De-souza, F. G. De-mello et al., An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids, Biochemical and Biophysical Research Communications, vol.343, issue.2, pp.443-449, 2006.
DOI : 10.1016/j.bbrc.2006.02.168

S. Galinari and E. P. Camargo, Trypanosomatid protozoa: Survey of acetylornithinase and ornithine acetyltransferase, Experimental Parasitology, vol.46, issue.2, pp.277-282, 1978.
DOI : 10.1016/0014-4894(78)90141-8

N. Grigorieff, Structure of the respiratory NADH:ubiquinone oxidoreductase (complex I), Current Opinion in Structural Biology, vol.9, issue.4, pp.476-483, 1999.
DOI : 10.1016/S0959-440X(99)80067-0

V. Guénebaut, A. Schlitt, H. Weiss, K. Leonard, and T. Friedrich, Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I), Journal of Molecular Biology, vol.276, issue.1, pp.105-112, 1998.
DOI : 10.1006/jmbi.1997.1518

T. P. Hatch, E. Al-hossainy, and J. A. Silverman, Adenine nucleoside and lysine transport in Chlamydia psittaci, Journal of Bacteriology, vol.150, pp.662-670, 1982.

O. Herby and L. Persson, Molecular genetics of polyamine synthesis in eukaryotic cells, Trends Biochemistry Sciences, vol.15, pp.153-158, 1990.

C. C. Klein, J. M. Alves, M. G. Serrano, G. A. Buck, A. T. Vasconcelos et al., Biosynthesis of Vitamins and Cofactors in Bacterium-Harbouring Trypanosomatids Depends on the Symbiotic Association as Revealed by Genomic Analyses, PLoS ONE, vol.91, issue.12, 2013.
DOI : 10.1371/journal.pone.0079786.s009

URL : https://hal.archives-ouvertes.fr/hal-00922587

P. Kronick and G. C. Hill, Evidence for the functioning of cytochrome o in kinetoplastida, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.368, issue.2, pp.173-180, 1974.
DOI : 10.1016/0005-2728(74)90147-9

G. Lenaz and M. L. Genova, Structural and functional organization of the mitochondrial respiratory chain: A dynamic super-assembly, The International Journal of Biochemistry & Cell Biology, vol.41, issue.10, pp.1750-1772, 2009.
DOI : 10.1016/j.biocel.2009.04.003

J. Morales, T. Mogi, S. Mineki, E. Takashima, R. Mineki et al., Is Composed of 12 Peptides Including a Heterodimeric Ip Subunit, Journal of Biological Chemistry, vol.51, issue.11, pp.7255-7263, 2009.
DOI : 10.1093/bioinformatics/18.4.608

M. C. Motta, Endosymbiosis in Trypanosomatids as a Model to Study Cell Evolution, The Open Parasitology Journal, vol.4, issue.1, pp.139-147, 2010.
DOI : 10.2174/1874421401004010139

M. C. Motta, L. H. Monteiro-leal, W. De-souza, D. F. Almeida, and L. C. Ferreira, Detection of Penicillin-binding Proteins in the Endosymbiont of the Trypanosomatid Crithidia deanei, The Journal of Eukaryotic Microbiology, vol.7, issue.5, pp.492-496, 1997.
DOI : 10.1146/annurev.bi.52.070183.004141

M. C. Motta, A. C. Martins, S. S. De-souza, C. M. Catta-preta, R. Silva et al., Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family, PLoS ONE, vol.183, issue.4, 2013.
DOI : 10.1371/journal.pone.0060209.s029

URL : https://hal.archives-ouvertes.fr/hal-00846833

M. H. Mundim and I. Roitman, *, The Journal of Protozoology, vol.1973, issue.2, pp.329-331, 1977.
DOI : 10.1073/pnas.72.8.2979

F. R. Opperdoes and P. A. Michels, Complex I of Trypanosomatidae: does it exist?, Trends in Parasitology, vol.24, issue.7, pp.310-317, 2008.
DOI : 10.1016/j.pt.2008.03.013

I. Palmié-peixoto, M. R. Rocha, J. Urbina, D. Souza, W. Einicker-lamas et al., Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids, FEMS Microbiology Letters, vol.255, issue.1, pp.33-42, 2006.
DOI : 10.1111/j.1574-6968.2005.00056.x

H. Schägger, Respiratory supercomplexes, IUBMB Life, vol.52, pp.119-128, 2001.

D. Speijer, C. K. Breek, A. O. Muijsers, P. X. Groenevelt, H. Dekker et al., which is homologous to mammalian subunit IV, FEBS Letters, vol.59, issue.1-2, pp.123-126, 1996.
DOI : 10.1006/abio.1994.1112

M. M. Teixeira, T. C. Borghesan, R. C. Ferreira, M. A. Santos, C. S. Takata et al., Phylogenetic Validation of the Genera Angomonas and Strigomonas of Trypanosomatids Harboring Bacterial Endosymbionts with the Description of New Species of Trypanosomatids and of Proteobacterial Symbionts, Protist, vol.162, issue.3, pp.503-524, 2011.
DOI : 10.1016/j.protis.2011.01.001

L. G. Warren, Metabolism of Schizotrypanum cruzi Chagas. I. Effect of Culture Age and Substrate Concentration on Respiratory Rate, The Journal of Parasitology, vol.46, issue.5, pp.529-539, 1960.
DOI : 10.2307/3274932

H. H. Winkler, Rickettsial permeability. An ADP-ATP transport system, Journal of Biological Chemistry, vol.251, pp.389-396, 1976.