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Mickaël Buchet∗ Frédéric Chazal† Steve Y. Oudot‡ Donald R. Sheehy§

Abstract

A new paradigm for point cloud data analysis has
emerged recently, where point clouds are no longer
treated as mere compact sets but rather as empirical
measures. A notion of distance to such measures has
been defined and shown to be stable with respect to
perturbations of the measure. This distance can eas-
ily be computed pointwise in the case of a point cloud,
but its sublevel-sets, which carry the geometric infor-
mation about the measure, remain hard to compute or
approximate. This makes it challenging to adapt many
powerful techniques based on the Euclidean distance to
a point cloud to the more general setting of the distance
to a measure on a metric space.

We propose an efficient and reliable scheme to
approximate the topological structure of the family of
sublevel-sets of the distance to a measure. We obtain
an algorithm for approximating the persistent homology
of the distance to an empirical measure that works in
arbitrary metric spaces. Precise quality and complexity
guarantees are given with a discussion on the behavior
of our approach in practice.

1 Introduction

Given a sample of points P from a metric space X,
the distance function dP maps each x ∈ X to the
distance from x to the nearest point of P . The
related fields of geometric inference and topological
data analysis have provided a host of theorems about
what information can be extracted from the distance
function, with a particular focus on discovering and
quantifying intrinsic properties of the shape underlying
a data set [5, 21]. The flagship tool in topological
data analysis is persistent homology and the most
common goal is to apply the persistence algorithm to
distance functions, either in Euclidean space or in metric
spaces [2, 16, 25]. From the very beginning, this line
of research encountered two major challenges. First,
distance functions are very sensitive to noise and outliers
(Fig. 1 left). Second, the representations of the sublevel
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‡Inria Saclay Île-de-France, steve.oudot@inria.fr.
§University of Connecticut, don.r.sheehy@gmail.com.

sets of a distance function become prohibitively large
even for moderately sized data. These two challenges led
to two distinct research directions. First, the distance to
the data set was replaced with a distance to a measure
induced by that data set [6]. The resulting theory
is provably more robust to outliers, but the sublevel
sets become even more complex to represent (Fig. 1
center). Towards more efficient representations, several
advances in sparse filtrations have led to linear-size
constructions [13, 22, 23], but all of these methods
exploit the specific structure of the distance function
and do not obviously generalize. In this paper, we bring
these two research directions together by showing how
to combine the robustness of the distance to a measure,
with the efficiency of sparse filtrations.

Contributions:

1. A Generalization of the Wasserstein stability and
persistence stability of the distance to a measure
for triangulable metric spaces. We describe the
setting of these stability results and state the main
theorems in this extended abstract; the proofs may
be found in the full version [1].

2. A general method for approximating the sublevel
sets of the distance to a measure by a union of
balls (Fig. 1 right). Our method uses O(n) balls
for inputs of n samples. Known methods for
representing the exact sublevel sets can require
nΘ(d) balls, where d is the dimension of the ambient
space.

3. A Generalization of the Vietoris-Rips filtration to
weighted point sets called the weighted Rips filtra-
tion. This is the first construction for computing
approximations to the distance to a measure in non-
Euclidean metrics. Independently, this filtration
comes with stability properties that make it useable
for other applications in topological data analysis
such as shape signatures [4].

4. A linear-size approximation to the weighted Rips
filtration. For intrinsically low-dimensional metric
spaces, we construct a filtration of size O(n) that
achieves a guaranteed quality approximation. This
is a significant improvement over the full weighted



Figure 1: From top to bottom, two sublevel sets for
dP , dµP ,m, and dPµP ,m with m = 3

|P | . The first is too

sensitive to noise and outliers. The second is smoother,
but substantially more difficult to compute. The third
is our approximation, which is robust to noise, efficient
to compute, and compact to represent.

Rips filtration, which has size 2n in general or
size

(
n
d+1

)
if one considers only simplices up to

dimension d.

Related Work. A filtration of the power distance
to a weighted point set arises naturally in α-shapes [14].
Cazals et al. studied the persistent homology of filtra-
tion from unions of balls of varying radii using the so-
called conformal α-shape filtration [3]. Similar to our
work, the conformal α-shape attempts to put an alterna-
tive filtration on a complex that describes the distance
function, the Delaunay triangulation in their case. That
approach is limited to Euclidean space and suffers from
the complexity blowup of the Delaunay triangulation.

The witnessed k-distance is another approach to
approximating the distance to a measure proposed
in [17]. This approach works only in Euclidean spaces
as it relies on the existence of barycenters of points.
The analysis links the quality of the approximation to
the underlying topological structure. In this paper,
we look at bounds independent of intrinsic geometry.
When restricted to the Euclidean setting, our method
improves the approximation bounds obtained in [17]
without any hypotheses on the intrinsic geometry.

2 Background

In this paper, we consider a metric space X with the
distance dX(·, ·). In a slight abuse of notation, we
also write dX to denote the distance between a point
and a set defined as dX(x, P ) = infp∈P dX(x, p). The
Hausdorff distance between two sets P and Q is denoted
dH(P,Q). We write B(x, r) for the open ball of center
x and radius r in dX, and we write B̄(x, r) for the
corresponding closed ball.

The distance to a measure is defined as follows.

Definition 2.1. Let µ be a probability measure on a
metric space X and let m ∈]0, 1] be a mass parameter.
We define the distance dµ,m to the measure µ as

dµ,m : x ∈ X 7→

√
1

m

∫ m

0

δµ,l(x)2dl,

where δµ,l is defined as

δµ,l : x ∈ X 7→ inf{r > 0 | µ(B̄(x, r)) > l}.

For a finite point set P ⊂ X, the empirical measure
µP is the normalized sum of Dirac measures δp:

µP =
1

|P |
∑
p∈P

δp.

The distance to an empirical measure has a simpler



description as

dµP ,m(x) =

√
1

k

∑
p∈S

dX(p, x)2,

where k = m|P | is assumed to be an integer and S
ranges over the k nearest neighbors of x in P .

A filtration F = {Fα}α∈R is a sequence of spaces
such that Fα ⊆ Fβ whenever α ≤ β. Persistence theory
studies the evolution of the homology of the sets Fα
for α ranging from −∞ to +∞. More precisely, the
filtration induces a family of vector spaces connected by
linear maps at the homology level, called a persistence
module. More generally, a persistence module is a pair
V = ({Vα}, {vβα}) where each Vα is a vector space and
vβα is a linear map Vα → Vβ such that vγβ ◦vβα = vγα for all
α ≤ β ≤ γ and vαα is the identity. A persistence module
is said to be q-tame if vβα has finite rank for every α < β.
The algebraic structure of a q-tame persistence module
U can be described and visualized by the persistence
diagram Dgm(U), a multiset of points in the plane. If U
comes from a filtration {Fα}, a point (α, β) in Dgm(U)
indicates a nontrivial homology class that exists in the
filtration between the parameter values α and β.

We overload notation and write Dgm({Fα}) to de-
note the persistence diagram of the persistence mod-
ule defined by the filtration {Fα}. Moreover, for a
real-valued function f , we write Dgm(f) to denote
Dgm({f−1(]−∞, α])}), the persistence diagram of the
sublevel sets filtration of f . For an introduction to per-
sistent homology, the reader is directed to [7, 15].

We put a metric on the space of persistence dia-
grams as follows. First, a partial matching M between
diagrams D and E is a subset of D × E in which each
element of D∪E appears in at most one pair. The bot-
tleneck cost of M is max(d,e)∈M ‖d− e‖∞. We say M is
an ε-matching if the bottleneck cost is ε and every (α, β)
in D or E with |β − α| ≥ 2ε is matched. The bottleneck
distance between D and E is defined as

dB(D,E) = inf{ε | ∃ an ε-matching between D and E}.

It is often useful to look at persistence diagrams
on a logarithmic scale, because the distance does no
longer depend on the scale at which the object is
seen. The log-bottleneck distance, denoted dln

B is the
bottleneck distance between diagrams after the change
of coordinates (α, β) 7→ (lnα, lnβ).

Given two persistence modules U = ({Uα}, {uβα})
and V = ({Vα}, {vβα}) and a real ε > 0, an ε-
homomorphism from U to V is a collection of linear
maps Φ = {φα} such that for all α < β, vβ+ε

α+ε◦φα = φβ ◦
uβα. Two ε-homomorphisms Φ from U to V and Ψ from
V to W can be composed to build a 2ε-homomorphism

ΨΦ from U to W whose linear maps are obtained by
composing the linear maps of Φ and Ψ. Among ε-
homomorphisms from U→ U, one has a particular role.
The ε-shift map 1εU is the collection of maps uα+ε

α given
in the persistence module U. These are used to define
the algebraic stability of persistence modules as follows.

Theorem 2.1. (Stability of Persistence Modules [7])

Let U and V be two q-tame persistence modules. If there
exist ε-homomorphisms Φ : U→ V and Ψ : V→ U such
that ΦΨ = 12ε

V and ΨΦ = 12ε
U , then

dB(Dgm(U),Dgm(V)) ≤ ε.

Theorem 2.1 is the algebraic generalization of previ-
ous work on stability of persistence diagrams [11]. One
consequence of the theorem is that for filtrations {Fα}
and {Gα},

Fα/c ⊆ Gα ⊆ Fcα for all α implies

dln
B(Dgm({Fα}),Dgm({Gα})) ≤ ln c.

Note that we pass to the log-bottleneck distance because
the filtrations are interleaved multiplicatively. Similarly,
for functions f and g such that f/c ≤ g ≤ cf , we have
dln
B(Dgm(f),Dgm(g)) ≤ ln c.

Because we want discrete objects to compute with,
many of the topological spaces that appear in this paper
are simplicial complexes. A simplicial complex K is a
collection of subsets of a vertex set P that is closed
under taking subsets, i.e. σ ∈ K and τ ⊂ σ imply
τ ∈ K. Let X and Y be simplicial complexes. A
simplicial map f : X → Y is a map between the
corresponding vertex sets such that for every simplex
σ ∈ X, f(σ) =

⋃
p∈σ f(p) is a simplex in Y . Two

simplicial maps f and g are contiguous if σ ∈ X implies
that f(σ) ∪ g(σ) ∈ Y . If two simplicial maps are
contiguous, then they induce the same homomorphism
at the homology level [20, Chapter 1].

3 Persistence and Stability of the Distance to
a Measure in a Metric Space

To compare the persistence diagram computed from a
finite sample to that of the distance to the underlying
measure on the (perhaps infinite) metric space requires
that the distance to the measure is sufficiently tame so
that its persistence diagram is well-defined. For this, we
require the underlying metric space to be triangulable,
i.e., homeomorphic to a locally finite simplicial complex.
In particular, the following theorem gives conditions
under which there exists a ground truth to compare
to, thus making it possible to speak coherently about
approximation.



Theorem 3.1. Let µ be a probability measure on a
metric space X. Then, dµ,m is 1-Lipschitz, and if X
is triangulable, then Dgm(dµ,m) is well-defined for any
mass parameter m ∈]0, 1].

If the persistence diagram is to be meaningful,
one might expect that it is stable with respect to
perturbations in the underlying measure. The following
theorem shows that this is indeed the case. Two
measures that are close in the quadratic Wasserstein
distance, W2 yield persistence diagrams that are close
in bottleneck distance, dB (see [24, Sec. 7.1]).

Theorem 3.2. Let µ and ν be probability measures on
a triangulable metric space X. For all m ∈]0, 1],

dB(Dgm(dµ,m),Dgm(dν,m)) ≤ 1√
m
W2(µ, ν).

The proofs of Theorems 3.1 and 3.2 are given in the
full version [1]. The techniques are similar to those used
in previous work in the Euclidean setting [6, 7].

4 Approximating the Distance to a Measure

To compute the persistence diagram of the sublevel sets
filtration of dµ,m, one must represent the sublevel sets.
They are not generally easy to compute. We propose
an approximation paradigm for dµ,m that replaces the
sublevel sets by a union of balls. The approach works in
any metric space and yields equivalent guarantees as the
witnessed k-distance approach used in [17] for Euclidean
space.

Given a metric space X, a finite set P and a function
w : P → R, the power distance f associated with (P,w)
is

(4.1) f(x) =
√

min
p∈P

dX(p, x)2 + w2
p,

where wp is the value of w at the point p. The function
w can be defined on a superset of P . Remark that we
restrict ourselves to the case of positive weights. This
is sufficient for our purpose and avoids technicalities.
Moreover, the sublevel set f−1(] −∞, α]) is the union
of the closed balls centered on the points p of P with

radius rp(α) =
√
α2 − w2

p. By convention, we assume

the ball is empty when the radius is imaginary.
We introduce the parameter k = m|P |. To simplify

the exposition we assume that k is an integer. In
Euclidean space, the distance to an empirical measure
is a power distance:

(4.2) dµP ,m(x) =
√

min
q
‖x− q‖2 + w2

q ,

where q ranges over all barycenters of k-tuples S ⊆ P
and w2

q = 1
k

∑
p∈S ‖p− q‖2.

In Euclidean space, it is possible to compute the
sublevel sets of dµP ,m exactly. They are unions of balls,

however Ω(kd
d+1
2 enb

d+1
2 c) balls may be required [10].

For any measure µ, we introduce the following approxi-
mation that has much smaller complexity, requiring only
O(n) balls.

(4.3) dPµ,m(x) =
√

min
p∈P

dX(p, x)2 + dµ,m(p)2

This is the power distance to the points of P with
weights given by the distance to the measure. It
only requires computing dµ,m at a finite collection
of points. It is easy to see that this approximation
cannot be significantly smaller than the distance to the
true measure, as shown in the following lemma which
provides the lower bound for both Theorem 4.1 and
Theorem 4.2.

Lemma 4.1. Let µ be a probability measure on a metric
space X and let m ∈]0, 1] be a mass parameter. If P is
a nonempty subset of X, then dµ,m ≤

√
2 dPµ,m.

Proof. Let x be any point of X. By (4.3), there exists
p ∈ P such that dPµ,m(x)2 = dX(p, x)2 + dµ,m(p)2. Since
dµ,m is 1-Lipschitz (Theorem 3.1), we get

dµ,m(x)2 ≤ (dX(p, x) + dµ,m(p))2

≤ 2(dX(p, x)2 + dµ,m(p)2) = 2 dPµ,m(x)2.

The approximation dPµ,m yields the following guar-
antees for approximating the distance to an empirical
measure in Euclidean space.

Theorem 4.1. Let P be a finite point set in Rd and let
m ∈]0, 1] be a mass parameter. Then,

1√
2
dµP ,m ≤ dPµP ,m ≤

√
3 dµP ,m,

and thus dln
B(Dgm(dµP ,m),Dgm(dPµP ,m)) ≤ ln(

√
3).

Proof. The lower bound follows from Lemma 4.1 when
applied to the empirical measure µP . For the upper
bound, let x be a point in Rd, and let S be the k
nearest neighbors of x in P (breaking ties arbitrarily).
Let x̄ be the barycenter of S with squared weight w2

x̄ =
1
k

∑
q∈S ‖x̄ − q‖2. In Euclidean space, the barycenter

minimizes the sum of squared distances to the points in
S, so
(4.4)

w2
x̄ =

1

k

∑
q∈S
‖x̄− q‖2 ≤ 1

k

∑
q∈S
‖x− q‖2 = dµP ,m(x)2.

It follows from the definitions of dPµP ,m and dµP ,m that
for all p ∈ P ,
(4.5)
dPµP ,m(x)2 ≤ ‖x−p‖2+dµP ,m(p)2 ≤ ‖x−p‖2+‖p−x̄‖2+w2

x̄.



The inequalities above come from replacing minimiza-
tions in (4.3) and (4.2) respectively with particular val-
ues. Since (4.5) holds for all p ∈ P , we can average the
values on the right hand side over all values of q ∈ S to
get a new bound as follows.

dPµP ,m(x)2 ≤ 1

k

∑
q∈S

(
‖x− q‖2 + ‖q − x̄‖2 + w2

x̄

)
≤ 3 dµP ,m(x)2.

The last inequality follows from (4.4) and proves the
desired upper bound.

The multiplicative interleaving of the functions im-
plies an additive interleaving of the persistence modules
of the sublevel sets filtrations on the log scale. So, the
relation between persistence diagrams follows from The-
orem 2.1.

The witnessed k-distances approach of Guibas et
al. gives another way to approximate dµP ,m [17]. The
bounds in Theorem 4.1 are tighter than those given in
Lemma 3.3 of [17]. In the full version of this paper,
we give a new analysis of witnessed k-distances to show
equally tight bounds for the approximation. However,
the real power of our approach is apparent when consid-
ering non-Euclidean metrics. The witnessed k-distance
cannot be defined in these cases because it relies on the
existence of barycenters. Our approximation gives the
following guarantee.

Theorem 4.2. Let P be a finite point set of a metric
space X and let m ∈]0, 1] be a mass parameter. Then,

1√
2
dµP ,m ≤ dPµP ,m ≤

√
5 dµP ,m,

and thus, dln
B(Dgm(dµP ,m),Dgm(dPµP ,m)) ≤ ln(

√
5).

Proof. The lower bound is implied by Lemma 4.1. Let
x ∈ X be any point and let p be its nearest neighbor
in P . Using the definition of dPµP ,m and the Lipschitz
property of dµP ,m (Theorem 3.1), we get the following.

dPµP ,m(x)2 ≤ dX(x, p)2 + dµP ,m(p)2

≤ dX(x, p)2 + (dµP ,m(x) + dX(x, p))2

≤ 3 dX(x, p)2 + 2 dµP ,m(x)2

Since dX(x, p) ≤ dµP ,m(x), it follows that dPµP ,m(x)2 ≤
5 dµP ,m(x)2 as desired. The multiplicative interleaving
of the functions implies an additive interleaving of the
persistence modules of the sublevel sets filtrations on the
log scale. So, the relation between persistence diagrams
follows from Theorem 2.1.

The bounds proved in Theorems 4.1 and 4.2 are
tight. In the full version of this paper, we give some
examples of points sets in metric spaces where some
points achieve the lower bound and others achieve the
upper bound [1]. The different factors in the upper
and lower bounds imply that one can improve slightly
the persistence diagram approximation to ln( 4

√
10) by

scaling dPµP ,m by
4√10√

2
. The effect of scaling on the

log-scale persistence diagram is just a shift along the
direction of the diagonal.

5 The Weighted Rips Filtration

Given a weighted set (P,w) and the associated power
distance f (as in (4.1)), one can introduce a generaliza-
tion of the Rips filtration that is adapted to the weighted
setting as has been done in [17]. This construction al-
lows us to approximate the persistence diagram of dµ,m
in some cases. Moreover, we show that it is stable with
respect to perturbation of the underlying sample (The-
orem 5.1) and that it gives a guaranteed approximation
to the persistence diagram of the distance to an empir-
ical measure (Theorem 5.2).

Recall that the sublevel set f−1(] − ∞, α]) is a
union of balls of different radii centered on the points
P . The nerve of this collection of balls is the weighted
Čech complex, a simplicial complex composed of all
subsets σ of P such that

⋂
p∈σ B(p, rp(α)) 6= 0. For a

wide class of metric spaces, this weighted Čech complex
will have the same homology as the union of balls.
However, computing the Čech complex requires testing
if a collection of metric balls has a common intersection,
which may be difficult. Instead, we use a weighted
version of the Rips complex that only requires distance
computations.

Definition 5.1. For a weighted set (P,w) in a metric
space X, the weighted Rips complex Rα(P,w) for a
parameter α is the maximal simplicial complex whose
1-skeleton has an edge for each pair (p, q) such that
dX(p, q) < rp(α) + rq(α). The weighted Rips filtration
is the sequence {Rα(P,w)} for all α ≥ 0.

As shown in [17], the weighted Rips and Čech
complexes share many properties with their unweighted
analogues. For example, as in the unweighted case,

(5.6) Cα(P,w) ⊆ Rα(P,w) ⊆ C2α(P,w)

for all α ≥ 0. See [1, 17] for a proof.
The first theorem we prove about weighted distance

functions shows that as long as the weights do not vary
too wildly, two Hausdorff-close samples yield weighted
Rips filtrations with similar persistence diagrams. This



provides a useful stability property for weighted Rips
filtrations built on samples.

Theorem 5.1. Let P and Q be two compact subsets of
a metric space X. Let w : X→ R be a t-Lipschitz func-
tion. Then, Dgm({Rα(P,w)}) and Dgm({Rα(Q,w)})
are well-defined and

dB(Dgm({Rα(P,w)}),Dgm({Rα(Q,w)})) ≤ (1+t)dH(P,Q).

Proof. [Proof Sketch] Theorem 2.1 implies that it suf-
fices to find ε-homomorphisms between H∗{Rα(P,w)}
and H∗{Rα(Q,w)} for ε = (1 + t)dH(P,Q) that com-
mute appropriately with the ε-shifts. Following the pat-
tern established in [8], we construct these homomor-
phisms by first defining projections from P and Q to
nearest neighbors in Q and P respectively. The main
work of the proof is to show that any such projections
induce simplicial maps Rα(P,w) → Rα+ε(Q,w) and
Rα(Q,w)→ Rα+ε(P,w) and that these simplicial maps
are contiguous with the corresponding inclusion maps.
The full details may be found in [1].

To use the weighted Rips filtration to approximate
the persistence diagram of the distance to a measure,
we need to restrict the class of spaces considered. If
the intersection of any finite number of balls in X is
either contractible or empty, X is said to have the
good cover property. Then the Čech complex has
the same homology as the union of balls, of which
it is the nerve, by the Nerve Theorem [18]. This
equivalence is extended to filtrations by the Persistent
Nerve Lemma [9].

The following Theorem is the main result of this
section and gives a guarantee on the approximation of
Dgm(dµP ,m) using the weighted Rips filtration.

Theorem 5.2. Let X be a triangulable metric space
with the good cover property and let P be a finite subset
of X. Then, dln

B(Dgm(dµP ,m),Dgm({Rα(P, dµP ,m)})) ≤
ln(2
√

5).

Proof. Since X is triangulable, Theorem 4.2 implies that

(5.7) dln
B(Dgm(dµP ,m),Dgm(dPµP ,m)) ≤ ln(

√
5).

The sublevel sets of dPµP ,m are the unions of balls
centered at points of P with weights given by dµP ,m.
The weighted Čech complex is the nerve of this set of
balls, so the Persistent Nerve Lemma and the good cover
property of X imply that

(5.8) Dgm(dPµP ,m) = Dgm({Cα(P, dµP ,m)}).

The multiplicative interleaving of the weighted Čech
and weighted Rips filtrations given in (5.6) implies an

additive interleaving of their persistence modules on the
log scale. Thus, Theorem 2.1 implies that
(5.9)
dlnB (Dgm({Cα(P, dµP ,m)}),Dgm({Rα(P, dµP ,m)})) ≤ ln(2).

The result now follows from (5.7), (5.8), (5.9), and the
triangle inequality for dlnB .

6 The Sparse Weighted Rips Filtration

The weighted Rips filtration presented in the previous
section has the desired approximation guarantees, but
like the Rips filtration for unweighted points, it usu-
ally grows too large to be computed in full. In [23],
it was shown how to construct a filtration {Sα} called
the sparse Rips filtration that gives a provably good ap-
proximation to the Rips filtration and has size linear in
the number of points for metrics with constant doubling
dimension (see Section 6.1 for the construction). Specif-
ically, for a user-defined parameter ε, the log-bottleneck
distance between the persistence diagrams of the Sparse
Rips filtration and the Rips filtration is at most ε. The
goal of this section is to extend that result to weighted
Rips filtrations.

The sparse Rips construction cannot be applied
directly here, since the weighted distance does not
induce a metric. Moreover, if all weights are equal to
some large constant and the points are on a circle, their
pairwise distances will all be equal. The sparsification
technique will thus be utterly inefficient. As we will
show, this difficulty can be overcome as long as the
weights are Lipschitz with respect to the input metric.

For the rest of this section, we fix a weighted point
set P in a metric space X, where the weight function
w : X → R is t-Lipschitz, for some constant t. To
simplify notation, we let Rα denote the weighted Rips
complex Rα(P,w).

The sparse weighted Rips filtration, {Tα}, is defined
as

Tα = Sα ∩Rα.
The (unweighted) sparse Rips filtration {Sα} captures
the underlying metric space and the weighted Rips
filtration {Rα} captures the structure of the sublevel
sets of the power distance function. Computing {Tα}
can be done efficiently by first computing {Sα} and
then reordering the simplices according to the birth time
in {Rα}. This is equivalent to filtering the complex
S∞. Note that the sparsification depends only on the
metric, and not on the weights. Thus, the same sparse
Rips complex can be used as the underlying complex
for different weight functions. We also simplify the
construction of {Sα} by using a furthest point sampling
instead of the more complex structure of net tree.

The technical challenge is to relate the persistence
diagram of this new filtration to the persistence diagram



of the weighted Rips filtration as in the following
theorem.

Theorem 6.1. Let (P,w), be a finite, weighted subset
of a metric space X with t-Lipschitz weights. Let ε < 1
be a fixed constant used in the construction of the sparse
weighted Rips filtration {Tα}. Then,

dln
B(Dgm({Tα}),Dgm({Rα})) ≤ ln

(
1 +
√

1 + t2 ε

1− ε

)
.

Since these filtrations are not interleaved, the only
hope is to find an interleaving of the persistence mod-
ules, which requires finding suitable homomorphisms
between the homology groups of the different filtrations.
After detailing the construction of the sparse Rips fil-
tration with the furthest point sampling, the rest of this
section proves Theorem 6.1.

6.1 Sparse Rips complexes Let (p1, . . . , pn) be a
furthest point sampling of the points P in a finite metric
space X. That is, pi = argmaxp∈P\Pi−1

dX(p, Pi−1),
where Pi−1 = {p1, . . . , pi−1} with p1 chosen arbitrarily.
We define the insertion radius λpi of point pi to be

λpi = dX(pi, Pi−1).

To avoid excessive superscripts, we write λi in place
of λpi when we know the index of pi. We adopt the
convention that λ1 = ∞ and λn+1 = 0. The furthest
point sampling has the nice property that each prefix Pi
is a λi-net in the sense that dX(p, Pi) ≤ λi for all p ∈ P ,
and dX(p, q) ≥ λi for all p, q ∈ Pi. We extend these nets
to an arbitrary parameter γ by defining

Nγ = {p ∈ P | λp > γ} and Nγ = {p ∈ P | λp ≥ γ}

Note that for all p ∈ P , dX(p,Nγ) ≤ γ and dX(p,Nγ) <
γ.

One way to get a sparse Rips-like filtration is to take
a union of Rips complexes on the nets Nεγ . However,
this can add significant noise to the persistence diagram
compared to the Rips filtration. This noise can be
reduced to ε on the log-scale by a careful perturbation of
the distance, where ε < 1 is a user-provided parameter.
For a point p, the perturbation varies with the scale and
is defined as follows.

sp(α) =


0 if α ≤ λp

ε

α− λp
ε if

λp
ε < α <

λp
ε(1−ε)

εα if
λp

ε(1−ε) ≤ α

Note that sp is 1-Lipschitz. The resulting perturbed
distance is defined as

fα(p, q) = dX(p, q) + sp(α) + sq(α).

Definition 6.1. Given the nets {Nγ}, and distance
functions fα, the sparse Rips complex at scale α is

Qα = {σ ⊂ Nε(1−ε)α | ∀p, q ∈ σ, fα(p, q) < 2α},

and the sparse Rips filtration is the sequence of spaces
{Sβ}β≥0, where Sβ =

⋃
α≤β Qα.

6.2 Projection onto nets and the induced sim-
plicial maps The following projection functions pro-
vide our main tool for defining maps between complexes.

πα(p) =

{
p if p ∈ Nε(1−ε)α
argminq∈NεαdX(p, q) otherwise

For any scale α, the projection πα maps the points of P
to the net Nε(1−ε)α because Nεα ⊆ Nε(1−ε)α. Note that
πα is a retraction of P onto Nε(1−ε)α.

A basic property of the perturbed distances is that
replacing a point with its projection, does not increase
the perturbed distance to the other points.

Lemma 6.1. For all p, q ∈ P and all α ≥ 0,
fα(p, πα(q)) ≤ fα(p, q).

Proof. See [23, Lemma 7] or [1] for a proof.

We are most interested in the case when a pair
of projections πα and πβ induce contiguous simplicial
maps between sparse Rips complexes (Lemma 6.2) or
weighted Rips complexes (Lemma 6.4).

Lemma 6.2. Two projections πα and πβ induce con-
tiguous simplicial maps Qρ → Qβ whenever ρ ≤ β and

there exists i so that λi+1

ε(1−ε) ≤ α ≤ β ≤
λi

ε(1−ε) .

Proof. The proof for this variant of the sparse Rips
complex can be found in the full version [1], though
it is virtually identical to [23, Lemma 9].

To prove the analogous result for sparse weighted
Rips complexes, we first need a lemma that describes
the effect of different projections on the endpoints of an
edge.

Lemma 6.3. Let (p, q) be an edge of Rδ with α, β ≤
δ

1−ε , then (πα(p), πβ(q)) ∈ Rκδ and (πα(p), πβ(p)) ∈
Rκδ, where κ = 1+

√
1+t2 ε

1−ε .

Proof. First, note that the projection functions satisfy
the following inequalities.

dX(p, πα(p)) ≤ εα ≤ εδ

1− ε

dX(q, πβ(q)) ≤ εβ ≤ εδ

1− ε



So, by applying the triangle inequality and the definition
of an edge in Rδ, we get the following.

dX(πα(p), πβ(q)) < dX(p, q) +
2εδ

1− ε

≤
(
rp(δ) +

εδ

1− ε

)
+

(
rq(δ) +

εδ

1− ε

)
≤
(
rp

(
δ

1− ε

)
+

εδ

1− ε

)
+

(
rq

(
δ

1− ε

)
+

εδ

1− ε

)
≤ rπα(p)(κδ) + rπβ(q)(κδ).

The last inequality follows from the fact that w is t-
Lipschitz (a full proof can be found in [1]). The bound
above is precisely the condition necessary to guarantee
that (πα(p), πβ(q)) ∈ Rκδ as desired. The proof is
symmetric to show (πα(p), πβ(p)) ∈ Rκδ after recalling
that rp ≥ 0.

Lemma 6.4. Two projections πα and πβ induce con-
tiguous simplicial maps from Rδ → Rκδ, where κ =
1+
√

1+t2 ε
1−ε whenever α, β ≤ δ

1−ε .

Proof. Fix α, β, and δ so that α, β ≤ δ
1−ε . Let (p, q) be

an edge from Rδ. Lemma 6.3 implies that all edges
of the tetrahedron {πα(p), πα(q), πβ(p), πβ(q)} are in
Rκδ. It follows that for any simplex σ ∈ Rδ, every
edge of πα(σ) ∪ πβ(σ) is in Rκδ. The definition of the
weighted Rips complex implies that every clique is a
simplex, so πα(σ) ∪ πβ(σ) ∈ Rκδ. Thus, πα and πβ
induce contiguous simplicial maps from Rδ → Rκδ as
desired.

All of the homomorphisms in the persistence mod-
ule interleaving will be induced by projections. We first
need to check that the projection π α

1−ε
induces a sim-

plicial map from Rδ to Tκδ, where κ = 1+
√

1+t2 ε
1−ε .

Lemma 6.5. For all α > 0, the projection π α
1−ε

induces

a simplicial map from Rα → Tκα, where κ = 1+
√

1+t2 ε
1−ε .

Proof. It will suffice to show that for each edge (p, q) ∈
Rα, there is a corresponding edge (π α

1−ε
(p), π α

1−ε
(q)) ∈

Rκα ∩ Q α
1−ε

. Since the latter complex is a clique

complex, this will imply that π α
1−ε

(σ) ∈ Rκα ∩Q α
1−ε
⊆

Tκα for all σ ∈ Rα as desired.
Lemma 6.1 and the definitions of f α

1−ε
, sp, sq, and

Rα imply

f α
1−ε

(π α
1−ε

(p), π α
1−ε

(q))

≤ f α
1−ε

(p, q) = dX(p, q) + sp

(
α

1− ε

)
+ sq

(
α

1− ε

)
≤ dX(p, q) +

2εα

1− ε
< 2α+

2εα

1− ε
=

2α

1− ε

Thus, (π α
1−ε

(p), π α
1−ε

(q)) ∈ Q α
1−ε

. Lemma 6.4 implies

that (π α
1−ε

(p), π α
1−ε

(q)) ∈ Rκα. So, we conclude that

indeed (π α
1−ε

(p), π α
1−ε

(q)) ∈ Rκα ∩Q α
1−ε

Now, we give conditions for when two projections
induce contiguous simplicial maps between the sparse
weighted Rips complexes Tδ and Tκδ.

Lemma 6.6. Two projections πα and πβ induce con-
tiguous simplicial maps from Tδ → Tκδ, where κ =
1+
√

1+t2 ε
1−ε whenever α, β ≤ δ

1−ε and there exists i so

that λi+1

ε(1−ε) ≤ α ≤ β ≤
λi

ε(1−ε) .

Proof. We simply observe that for any σ ∈ Tδ, σ ∈ Qρ
for some ρ ≤ δ. If ρ ≤ β then Lemma 6.2 implies
πα(σ)∪πβ(σ) ∈ Qβ . Otherwise πα(σ)∪πβ(σ) = σ ∈ Qρ.
So in either case, we have πα(σ)∪πβ(σ) ∈ Sκδ. Now, by
Lemma 6.4, we have that πα(σ) ∪ πβ(σ) ∈ Rκδ. So, we
have that πα(σ) ∪ πβ(σ) ∈ Rκδ ∩ Sκδ = Tκδ as desired.

We can now give the proof of the interleaving which
will imply the desired approximation of the persistent
homology.

Proof. [Proof of Theorem 6.1] To prove a multiplica-
tive κ-interleaving between {Rα} and {Tα}, it suffices
to provide homomorphisms H∗(Rα) → H∗(Tκα) and
H∗(Tα) → H∗(Rκα) for all α ≥ 0. In both cases, the
homomorphisms will be induced by projections. Since
Tα ⊆ Rκα, we consider the homomorphism H∗(Tα) →
H∗(Rκα) induced by the inclusion π0. The other homo-
morphism is H∗(Rα)→ H∗(Tκα) induced by the projec-
tion π α

1−ε
, which is a simplicial map on the complexes

as shown in Lemma 6.5. It will suffice to prove that
for all α > 0, the following diagrams commute at the
homology level.

Rα
� � // Rκα

Tα
� � //?�

OO

. �

<<zzzzzzzz
Tκα

?�

OO Rα

π α
1−ε

DDD

""DDD

� � // Rκα

Tα
� � //?�

OO

Tκα
?�

OO

The left diagram commutes because all maps are inclu-
sions and therefore it also commutes at the homology
level. For the right diagram, the upper triangle com-
mutes at the homology level by Lemma 6.4 and the ob-
servation that the π0 is the inclusion since contiguous
maps induce the same homomorphism at the homology
level. For the lower triangle it will suffice to show that
the homomorphism induced by π α

1−ε
commutes with

that produced by the inclusion π0. Let φi = π λi
1−ε

for

i = 1, . . . , n + 1. The subscript ∗ indicates the homo-
morphism induced by a simplicial map at the homology
level. Now, Lemma 6.6 implies that φi and φi+1 are



contiguous. So, choosing k such that λk ≤ εα < λk−1,
we can apply Lemma 6.6 repeatedly to conclude that

π0∗ = φn+1∗ = φn∗ = · · · = φk∗ = π α
1−ε∗.

7 Concluding Remarks on an Implementation

As a proof of concept, we have implemented the
weighted Rips and sparse Rips filtrations of Sections 5-
6, and we have tested them against manufactured data.
Our C++ implementation works in Euclidean spaces
and uses the ANN library [19] for proximity queries.
Persistence barcodes are computed using A. Zomoro-
dian’s implementation of the persistence algorithm [25].
Our experimental results illustrate the three main sell-
ing points of our approach:

• the quality of the output when approximating the
persistence diagram of the distance to a measure,

• the stability of the output with respect to non-local
perturbations of the input, and

• the scalability of the approach, made possible by
the control over the size of the sparse Rips filtra-
tion.

Several input point clouds have been tested, with differ-
ent sets of parameters, to assess the relevance of these
observations. However, no real-life data has been con-
sidered yet, and further investigations along this line
are needed to fully validate the (sparse) weighted Rips
filtrations as practical tools. Details on our data sets,
results and timings can be found in the full version of
the paper [1].

In this section, we illustrate our results three differ-
ent perspectives: the quality of the approximation, the
stability of the diagrams with respect to noise, and the
size of the filtration after sparsification.

We used the ANN library [19] for the k-nearest
neighbors search and code from Zomorodian follow-
ing [25] for the persistence. The topology of the union of
balls is acquired through the α-shapes implementation
from the CGAL library [12].

Datasets
For the first two parts, we consider the set of points

in R3 obtained by sampling regularly the skeleton of
the unit cube with 116 points. Then we add four noise
points in the center of four of its faces such that two
opposite faces are empty.

We would like to compute the persistence diagram
of the skeleton of the cube. We write this diagram
Dgm(Skel). It contains five homology classes in dimen-
sion 1 and one in dimension 2, and it has the barcode
representation given in Figure 3.

Figure 2: Skeleton of a cube with outliers

For sparsification, we use a slightly bigger dataset
composed of 10000 points regularly distributed on a
curve rolled around a torus. The point set is shown
on Figure 4.

Figure 4: Spiral on a torus

Approximation We work from now on with a
mass parameter m such that k = mn = 5. The
persistence diagram of dµP ,m is given in Figure 5:

The diagrams obtained with our various approxi-
mations have very similar looks. We only show the one
obtained with the sparse Rips filtration with a parame-
ter ε = 0.5 in Figure 6.

To compare diagrams, we use the bottleneck dis-
tances between the diagrams. Figure 7 shows the dis-
tance matrix between the various diagrams, while Fig-
ure 8 shows some bottleneck distances between per-
sistence diagrams of different dimensions. Note that
Dgm(dP ) corresponds to the diagram obtained by us-
ing the distance function to the point cloud.

The largest difference is between Dgm(Skel) and
Dgm(dµP ,m). This is partly due to an effect of shifting
while using the distance to a measure. After this
initial shift, the distance are small compared to the
theoretical bounds. Notice that the different steps of
the approximation do not have the same effect on all
dimensions.

All diagrams obtained by the different approxima-
tions are closer to Dgm(Skel) than the persistence dia-
gram of the distance to the point cloud, Dgm(dP ) given
in Figure 9. For inference purposes, one crucial parame-



Figure 3: Persistence diagram of a cube skeleton without noise

Figure 5: Dgm(dµP ,m) for the cube skeleton with outliers with k = 5

Figure 6: Dgm({Tα}) for the cube skeleton with outliers with k = 5 and ε = .5

Dgm(Skel) Dgm(dµP ,m) Dgm(dPµP ,m) Dgm(Rα) Dgm(Tα) Dgm(dP )

Dgm(Skel) 0 .1528 .1473 .1473 .1817 .25
Dgm(dµP ,m) .1528 0 .09872 .0865 .1183 .2543
Dgm(dPµP ,m) .1473 .09872 0 .0459 .1084 .2642

Dgm(Rα) .1473 .0865 .0459 0 .1128 .2598
Dgm(Tα) .1817 .1183 .1084 .1128 0 .2484
Dgm(dP ) .25 .2543 .2642 .2598 .2484 0

Figure 7: Matrix of distances for the bottleneck distance

ter is the signal-to-noise ratio. We define it as the ratio
between the smallest lifespan of topological feature we
aim to infer and the longest lifespan of noise features.
A ratio of 1 corresponds to a signal that is not differen-
tiable from the noise and ∞ corresponds to a noiseless
diagram. In our example, only the dimensions 1 and 2
are relevant as the dimension 0 diagram corresponding
to connected components has only one relevant feature

and its lifespan is infinite. Results are listed in Fig-
ure 10.

Signal-to-noise ratios are clearly better than the one
of Dgm(dP ). Some of the approximation steps improve
the ratio. This is due to two phenomena.

When one goes from dµP ,m to dPµP ,m, the filtration

eliminates the cells of the kth order Voronoi diagram
that are far from the point cloud. These cells induce



Dgm(A) Dgm(B) dim 0 dim 1 dim 2
Dgm(Skel) Dgm(dµP ,m) .05202 .1528 .1495

Dgm(dµP ,m) Dgm(dPµP ,m) .09872 .0195 .0972
Dgm(dPµP ,m) Dgm(Rα(P, dµP ,m)) .0007 .0044 .0459

Dgm(Rα(P, dµP ,m)) Dgm(Tα(P, dµP ,m)) .0872 .1128 .0026
Dgm(Skel) Dgm(dPµP ,m) .0405 .1473 .0982
Dgm(Skel) Dgm(Tα(P, dµP ,m)) .1026 .1817 .098
Dgm(Skel) Dgm(dP ) .25 .2071 .1481

Figure 8: Bottleneck distances between diagrams

Figure 9: Dgm(dP ) for the cube skeleton with outliers

Diagram dim 1 dim 2
Dgm(Skel) ∞ ∞

Dgm(dµP ,m) 247 2.74
Dgm(dPµP ,m) 69.8 43

Dgm(Rα(P, dµP ,m)) ∞ ∞
Dgm(Tα(P, dµP ,m)) 132 ∞

Dgm(dP ) 5.66 1

Figure 10: Signal to noise ratios

local minima that produce noise features in the dia-
grams. Removing them cleans parts of the diagram.
The same phenomenon happens with the witnessed k-
distance perviously mentioned.

Using the Rips filtration instead of the Čech also re-
duces some noise. It eliminates artifacts from simplices
that are introduced and almost immediately killed in
the Čech complex due to balls that intersect pairwise
but have no common intersection.

Stability
The weighted Rips filtration is stable with respect

to noise. We illustrate this by studying the effect
of an isotropic noise on our skeleton of a cube. We
consider three different standard deviations for our
noise. Figure 11 shows the bottleneck distances between
the persistence diagram of the sparse weighted Rips
structure with the Gaussian noise and the one without
Gaussian noise.

Unsurprisingly, the bottleneck distance is increasing
with standard deviation of the noise. The signal-to-

Standard deviation .05 .1 .5
db in dimension 1 .1469 .2261 .2722
db in dimension 2 .047 .0914 .1046

Figure 11: db between Dgm({Tα}) with and without
Gaussian noise

noise ratio shown in Figure 12 is more interesting.

Standard deviation 0 .05 .1 .5
Ratio in dimension 1 132 8.27 3.17 1.04
Ratio in dimension 2 ∞ ∞ 100.2 ∞

Figure 12: Signal to noise ratio of Dgm({Tα}) depend-
ing on noise intensity

Inferring correctly the homology of the cube skele-
ton is possible with standard deviation 0.05 and 0.1.
Figure 13 shows the persistence diagram obtained with
a standard deviation of 0.1. The ∞ in the 0.5 case in
dimension 2 is not relevant as there is no noise but the
feature is too small compared to the rest of the diagram
as shown in Figure 14. Note that 0.5 corresponds to
half of the side of the cube, and thus, it is logical to be
unable to retrieve any useful information.

Some structure appears even with standard devia-
tion as large as 0.5. The three bigger features in di-
mension 1 are relevant. However, we miss two elements
and it is difficult to decide where to draw the frontier
between relevant and irrelevant features.



Figure 13: Persistence diagram of {Tα} with k = 5, ε = 0.5 and a Gaussian noise with standard deviation 0.1

Figure 14: Persistence diagram of {Tα} with k = 5, ε = .5 and a Gaussian noise with standard deviation .5

Sparsification efficiency
We introduced sparsification in Section 6 to reduce the

size of the Rips filtration. The method introduced a
new parameter ε, and the size of the filtration depends
heavily on ε. The evolution of the size of the filtration
depending on the parameter ε is given in Figure 15.

Figure 15: Size of the filtration depending on ε for the
spiral

The minimum size is reached around ε = .83. This
minimum depends on the structure of the dataset. For
example, considering a set of points uniformly sampled
in a square, we obtain decreasing size of the filtration.

The filtration size is nearly constant after a rapid
decrease. In this example, the size is of order 107 sim-

plices for an input of 105 vertices. Computing persis-
tent homology is tractable for any value in this range.
Structure in the data helps reduce the complexity of the
sparse filtration.
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