
HAL Id: hal-01074822
https://inria.hal.science/hal-01074822

Submitted on 15 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reusing Motor Commands to Learn Object Interaction
Fabien Benureau, Paul Fudal, Pierre-Yves Oudeyer

To cite this version:
Fabien Benureau, Paul Fudal, Pierre-Yves Oudeyer. Reusing Motor Commands to Learn Object
Interaction. ICDL-EPIROB 2014, Oct 2014, Genoa, Italy. �hal-01074822�

https://inria.hal.science/hal-01074822
https://hal.archives-ouvertes.fr

Reusing Motor Commands

to Learn Object Interaction

Fabien Benureau1,2, Paul Fudal1, Pierre-Yves Oudeyer1

1Inria Flowers Team, 2Bordeaux University, France

Abstract—We propose the Reuse algorithm, that exploit data
produced during the exploration of an first environment to
efficiently bootstrap the exploration of second, different but
related environment. The effect of the Reuse algorithm is to
produce a high diversity of effects early during exploration.
The algorithm only constrains the environments to share the
same motor space, and makes no assumptions about learning
algorithms or sensory modalities. We illustrate our algorithm
on a 6-joints robotic arm interacting with a virtual object, and
show that our algorithm is robust to dissimilar environments,
and significantly improves the early exploration of similar ones.

I. MOTIVATION

We consider the problem of a robot exploring an unknown

environment without a predefined goal to achieve. Exploring

an environment for its own sake allows to build a broad

knowledge base and a diverse skillset. Those can then be

exploited later-on, when the need to act towards a specific

goal arises. Often, in those situations where a practical, useful

outcome is required, ressources and time constraints preclude

learning new skills, and necessitate to quickly find a solution

by adapting an existing one to the problem.

This pattern of exploration for later exploitation is con-

sistently present in human learning. A child playing with a

toy will interact with it in different ways: pushing, grabbing,

stacking, squeezing, shaking, chewing, or throwing it. While

doing so, it acquires crucial motor skills and affordance knowl-

edge about common objects. Similarly, school education will

teach students on an array of topics. Some of this knowledge

acquired will only be useful in a few situations during life,

but those situations might not offer the possibility to acquire

the skill outright given the time and effort required to do so.

As such, the relevant skills need to be assimilated ahead of

time, before being able to know which one will be useful. To

replicate such learning patterns in robots, we need to create

exploration algorithms, and be able to exploit the result of

those explorations.

Exploration algorithms face a specific set of challenges in

robotics, where sensorimotor spaces typically exhibit recurring

characteristics: they are highly-dimensional, redundant, non-

linear, and the noise is not homogeneously distributed, making

exhaustive approaches impossible, and naive ones – such as

random sampling – inefficient. Redundancy and high noise

make many actions yield poor or duplicate data from a learning

standpoint. And, as any robotic interaction takes significant

time, the number of actions a robot can execute in practice is

severely limited. As such, selecting actions that generate good

learning data is crucial for robots.

We propose the Reuse algorithm that exploit the exploration

of a previous environment to explore a new, different envi-

ronment more efficiently. Here, environments are one-step,

episodic sensorimotor black-boxes, with predefined motor and

sensory channels. The exploration algorithm can interact with

the environment by submitting motor commands, and receive

a sensory feedback, after which the environment is reset. The

environment encompass anything beyond the interface avail-

able to the exploration algorithm: any pre- or post-processing

of the motor and sensory signals, the body of the robot, and

its surroundings. In this article, we will specifically consider

environments involving object interaction.

To introduce the idea behind the Reuse algorithm, let’s

consider a baby playing with a toy rattle. After sufficient

interaction, the baby will have learned that the rattle produces

salient sounds when shaken or thrown. If the baby is then

introduced to a bouncy ball for the first time, the baby may

want to investigate if this new object is working the same

way as a rattle, and shake and throw the ball. Shaking will

not produce salient results, but throwing the ball will. By re-

trying interactions that produced salient effects on the rattle,

the baby quickly produced salient effects on the ball.

We exploit this idea on a robot that creates a model of a

first environment by exploring it. The robot is then introduced

to a different environment, and we investigate the benefits

yielded by reexecuting actions in the second environment that

produced salient observations in the first, compared to restart-

ing the exploration from scratch in the second environment.

This strategy bets that the sets of actions that produces salient

effects are at least partially overlapping across environments.

It does not assume, however, that the environments have

the same sensory modality – in our previous example, the

rattle produced auditory stimulation, while the bouncy ball

produced visual ones. Moreover, our approach does not make

assumptions about the learning algorithm employed in one

environment or the other. We show that the Reuse algorithm

improves the learning performance of similar environments

while being robust to dissimilar ones.

II. PROBLEM

In this section, we formally define the problem.

Henceforth, a task is defined as a set (M,S, f, n).

• M is the motor space, and it represents a parameterization

of the movements the robot can execute. It is a bounded

hyperrectangle of R
dM , with dM the dimension of the

motor space. In this article, the motors of the robot are

operated using dynamic movement primitives [23], whose

parameters are vectors of real values choosen in R
dM .

• S is the sensory space, of dimension dS : an arbitrary,

bounded, subset of R
dS , with dS the dimension of the

sensory space. Effects and goals (desired effects) are

elements of S.

• f is a function from M into S, returning the sensory

feedback of the environment to a given motor command.

• n is the maximum number of samples of f allowed. It

defines the number of actions the robot is allowed to

execute to construct an inverse model of the environment.

This model is a function gt : S 7→ P(M), with P(M)
the set of subsets of M . P(M) allows us to encode the

redundancy of the environment into the model, should we

wish to do so.

In the remainder of this article, x will be used for motor

commands and y for effects. An observation is a pair (x,y)
with f(x) = y.

The exploration trajectory ξA of a task A =
(MA, SA, fA, nA) is defined as the sequence of n
observations {(xi,yi)}0≤i<nA

with fA(xi) = yi, acquired

during exploration.

Given a finite set of test goals EA taken in SA, we can

compute the average error of the model over EA at time t as :

eA(t) =

∑
yi∈EA

‖fA(gt(yi))− yi‖

|EA|

with |EA| the cardinal of EA. EA is not known of the learner.

In this paper, we are interested at the improvement in

learning performance that can be achieved if the exploration

trajectory of a source task A = (MA, SA, fA, nA) is available

during the learning of a target task B = (MB , SB , fB , nB),
with the only condition that MA = MB , compared to learning

B without additional knowledge. We can straightforwardly

relax the constraint to MA ∩MB 6= ∅, but we won’t consider

such cases in this article.

We define eB(t, A, ξA), the average error at time t, on a

task B that has access to the exploration trajectory ξA of

the source task A. The error eB(t, A, ξA) depends on B, and

on the algorithm that will be used to exploit the information

contained in the description of A and the exploration trajectory

ξA.

III. RELATED WORK

The simplest exploration algorithm is random motor bab-

bling where motor commands are randomly chosen in the

motor space. Since we are evaluating the diversity of effects

that can be produced by the robot, this approach is particularly

inefficient in highly redundant motor spaces, where many

different motor commands generate the same result. Goal-

directed exploration techniques solve this problem by selecting

random goals rather than motor commands: this ensures that

the exploration will try to learn to accomplish different things

rather than learning to accomplish the same thing in different

ways. When the dimension of the motor space is high but

the dimension of the sensory space is low, this can increase

Fig. 1. Transfer can impact learning performance in different ways. The blue
and pink curves are the average error in the forward or inverse model without
and with transfer of learning data from a past task respectively. In the context
of this paper, we are mainly interested in the error difference in the early
stages of exploration.

learning performance by orders of magnitude, as [8] and [7]

demonstrated in inverse kinematics tasks. We will employ a

simple random goal-babbling algorithm to explore our envi-

ronments.

Our approach brings together exploration algorithms and

transfer learning. Transfer learning investigates the question

of how to reuse what was learned in a situation in another

[13], [15], [14]. A source task is learned, and knowledge

extracted from this task is transferred to a target task, where

it is leveraged to improve learning performance. Figure 1

introduces the different effect transfer typically can have on

performance. Many different approaches have been proposed.

One can transfer the training data from the source task to

the target task, eventually applying relevant transformations

to it. In the context of reinforcement learning, model-based

methods [12], [9] can transfer knowledge about the model

of the environment to the target task. Starting point methods

[18] set the final Q-table of a source task as the initial one

of the target task, and usually provide a jumpstart for the

performance. However, in either of those methods, when tasks

don’t match perfectly, an expert is needed to map the first task

to the second task.

Another approach modifies the representation of the target

task by leveraging source task knowledge, either reducing the

dimensionality of the state or action space by discovering

latent space parameterizations [16], or expanding it by adding

new state variables in the target space [17]. If the environment

is shared between tasks, the model of the world can be

transferred to bias the learning of a control function, as in

[19].

Our work shares resemblance to the imitation learning ap-

proach of [11], where source task policies are reused to guide

exploration in the target task. In [11], transferred policies must,

in the MDP formalism, share the same transition functions.

Our algorithm does not have such a constraint, and the same

actions will lead to different effects in each task.

Many of the transfer learning approaches would proba-

bly out-perform our approach in situations where they are

applicable, as they make more assumptions about how the

tasks are related, and exploit those assumptions. Our approach

distinguishes itself by being applicable to autonomous settings,

and in particular applicable to situations where no assumptions

can be made about the model, dynamics, or the existence of

a reward signal for any of the environments.

Moreover, our approach is aimed at boostrapping the explo-

ration of the target environment, rather than a specific learning

goal.

This paper extends our previous work [10], were the eval-

uation was done on simple 2D simulations. Here we provide

more complex environments using real robots and simulations,

with motor primitives parameterized by dynamical motor

primitives. Moreover, this work proposes a method of transfer

simpler than [10].

IV. METHOD

Our method is organized around three algorithms. The first,

EXPLORE(), describes the learning and exploration of the

source task. The second, TRANSFER(), is applied at the end

of the learning of the source task, and produces the data to be

transferred to the target task. The third, REUSE(), controls how

the transferred data impacts the exploration algorithm in the

target task. The complete source code for these algorithms, as

well as the one of the experimental setup is available to allow

examination and ensure reproductibility1.

A. Exploration and Learning for Source Tasks

Given a task (SA,MA, fA, nA), we train a predictor to

compute a forward model of the environment, and use a

constrained optimization routine on the predictor to compute

the inverse model. For each interaction with the environment,

the robot chooses the motor command to execute using a

combination of motor and goal babbling.

1) Forward Model:

To approximate the function f from a set of observations,

we employ Locally Weighted Linear Regression (LWLR)

[1][2], a incremental machine learning algorithm. Since the

aim here is to show a difference of learning performance be-

tween two exploration strategies, the performance baseline is

of little concern, and there is no need to employ a sophisticated

learning algorithm, the complexity of which might get in the

way of understanding the effect studied here. The ability of the

learning algorithm to extrapolate from existing observations is

however crucial for an efficient exploration. LWLR met this

criterion, while remaining simple and reasonably robust [3],

which is why it was chosen here.

Given a set of observations D = {(xk,yk)} where for each

k, fA(xk) = yk, and a query vector xq , for which we wish to

predict the effect, we compute, for each point xk, the euclidean

distance to xq and derive a gaussian weight wk :

wk = e
−‖xk−xq‖2

σ2

We consider the matrices X with Xk,i = (xk)i, Y with

Yk,i = (yk)i, and W = diag(w0, w1, ..., wn), and compute :

β = (XTWX)+(XTWY)

1To reviewers: it not yet available but it will be at the time of the publication

where XTWX is a positive definite symmetric matrix, and

(XTWX)+ is its Moore-Penrose inverse [4].

Then:

ye = βT
xq

ye is the LWLR estimate of xq , given the observed data D.

We define the function PREDICTLWLR(xq, D) that compute

ye for any xq ∈MA given D.

In our implementation, σ, which control the locality of the

regression, is dynamically computed. With dMA
as the dimen-

sion of the motor space, we define a constant N = 2dMA
+1,

and compute σ as the average distance of the N closest points

of the query vector xq . All other points of D besides the N
closest neighbors are given a weight of zero.

2) Inverse Model: Given a query point yq ∈ SA, we want

to compute an estimate of xe ∈ MA so that ‖f(xe)− yq‖ is

minimal.

Since MA is a hyperrectangle of R
dMA , we use L-BFGS-

B [5][6], a quasi-Newton method for bound-constrained opti-

mization, to minimize the error :

xe = argmin
x

(||yq − PREDICTLWLR(x, D)||)

The optimization process is initialized with the motor com-

mand corresponding to the closest neighbor of yq in the set

of observations.

3) Source Task Exploration:

For each interaction with the environment, the exploration

algorithm chooses a motor command to sample fA. In

robotics, a common situation is a motor space too large to

be sampled exhaustively. In our experiments the number of

allowed samples is small in comparison to what would be

needed to exhaustively sample the motor space to a useful

resolution. The works of [7] and [8] have shown that goal

babbling is an effective method in these situations.

For each sampling of fA, the exploration algorithm does

either a random motor babbling action — picks a random

point in the hyperrectangle MA —, or does a goal babbling

action, i.e. picks a point in the bounded sensory space SA as

a goal for the inverse model, and infers an motor command

to execute that is likely to produce that goal.

In this paper, we are concerned with object interactions

tasks. Such tasks distinguish themselves by having many

motor commands producing no observable effect, because the

robot did not manage to touch the object. To explore those

spaces appropriately, the exploration algorithm is decomposed

in two phases. The first phase is one of pure random motor

babbling, and lasts an arbitrary number of Kboot samples. This

allows the learner to gather several observations where the

object was interacted with.

The second phase is dominated by goal babbling being

chosen over motor babbling according to the probability pgoal.

Since the goal babbling routine uses the current sensorimotor

model fA to optimise the infered motor commands to execute,

it needs at least a few salient observations from the first phase

to bootstrap correctly.

Algorithm 1: EXPLORE(A, Kboot, pgoal, prandom)

Input:

• A = (SA,MA, fA, nA), source task.

• Kboot, duration of pure motor bootstrapping.

• pgoal, ratio of goal babbling.

• prandom, ratio of random goal babbling.

Result:

• ξA = {xi,yi}0≤i≤nA
∈ (SA ×MA)

nA , exploration

trajectory.

ξA ← []

for t from 0 to nA do

if t ≤ Kboot or RANDOM() ≥ pgoal then

xt = MOTORBABBLING(A)

else

xt = GOALBABBLING(A, ξA)

yt ← fA(xt) // execute the command

add (xt,yt) to ξA

MOTORBABBLING(A)

choose xt randomly in MA

return xt

GOALBABBLING(A, ξA)

if RANDOM() ≤ prandom then

choose a goal gt randomly in SA

else
choose a cell randomly in SA among those that

contain an already observed effect.

choose a goal gt randomly in the cell

xt = argmin
x

(||gt − PREDICTLWLR(xt, ξA)||)

return xt

Two strategies of goal babbling are employed. The first one

(used with probability prandom) is random, with the next goal

being uniformly drawn from SA. The second one considers a

uniform grid over SA of a prespecified resolution along each

axis. Then, it randomly chooses a grid cell among those that

contains at least one effect, and creates a random goal within

the cell. The first strategy tends to set goals that may be far

from any observation, while the second will favor goals that

are less ambitious and that generate motor commands not far

from one whose effect has been observed. This is expressed in

the GOALBABBLING() function in the EXPLORE algorithm.

B. Exploration in Target Tasks

1) Processing the Trajectory:

For each interaction in the second task, the learning algo-

rithm can request reusing a motor command from the first

task rather than doing random motor babbling. Goal babbling

behavior is unchanged. Our reuse algorithm defines which

motor command is transferred when such a request is made.

The whole assumption behind reexecuting motor commands

from a previous tasks is that if they generated a diverse set of

effects in the past task, they might generate a variety of effects

in the current task as well, hence bootstrapping the model with

good observations. Of course, this assumption hinges on the

fact that the two tasks are sufficiently similar.

In order to generate a sequence of motor commands that

generated a diverse set of effects, we reuse the grid of the

goal babbling algorithm, and assign each cell with a bin. In

this bin, we put the motor commands whose effect belong

to the corresponding region. When a motor command is

requested, we choose a random, non-empty, bin and draw,

without replacement, a random motor command from the bin.

This procedure is codified in Algorithm TRANSFER.

This procedure has a low computational cost, and only

transfer structured set of motor commands. No sensory data

is shared across tasks, hence the target task never tries to use

the forward or inverse model of the source task.

Given a trajectory exploration ξ, we divide the sensory space

into regions. In this article, we create regions in SA using a

simple grid. For each region of SA, we define the bin bR as

the set of motor commands corresponding the observed effects

belonging to R.

Algorithm 2: TRANSFER(ξA)

Input: ξA = {(xi,yi)}0≤i≤nA
, exploration trajectory.

Result: B, a set of motor commands bins.

B = empty set

Divide SA into a set of regions R
for R ∈ R do

for (xi,yi) ∈ ξ, with yi ∈ R do

add xi to bR

add bR to B

2) Exploration:

We modify Algorithm 1 to replace the call to MOTORBAB-

BLING() by a probabilistic call to REUSEBABBLING() and

MOTORBABBLING(), according to a probability preuse, pro-

ducing the REUSE algorithm.

V. EXPERIMENTS

We considered a hardware and simulated experimental setup

where a 6 DOFs robotic arm interacts with an object, a cube

or a ball, and observe the displacement of the object at the end

of the interaction. For the hardware setup, we adopt a hybrid

approach where the movement of the robot is executed on the

hardware, while the trajectory of the end-effector is captured

by a camera and replayed in a simulated physic engine where

the interaction with a virtual object takes place. A video of

the setup is available2.

Algorithm 3: REUSE(B, B, Kboot, pgoal, ptransfer, prandom)

Input:

• B = (SB ,MB , fB , nB), target task.

• B, set of bins of motor commands.

• Kboot, duration of pure motor bootstrapping.

• pgoal, ratio of goal babbling.

• prandom, ratio of random goal babbling.

• ptransfer, ratio of transfer motor babbling.

Result:

• ξB = {xi,yi}0≤i≤nB
∈ (SB ×MB)

nB , exploration

trajectory.

ξB ← []

for t from 0 to nB do

if RANDOM() ≥ pgoal then

if RANDOM() ≤ ptransfer then

xt = REUSEBABBLING(B, B)

else

xt = MOTORBABBLING(B)

else

xt = GOALBABBLING(B, ξB)

yt ← fB(xt) // execute the command

add (xt,yt) to ξB

REUSEBABBLING(B, B)

if at least one bin of B is not empty then

choose a non-empty bin bR of B randomly.

draw xt from bR without replacement

return xt

else

return MOTORBABBLING(B)

A. Hardware Experiments

The robots are a serial chain of 6 servomotors, with Dy-

namixel RX-64 as the three proximal motors and three RX-28

for the distal ones. Those servomotors are capable of delivering

respectively 64 and 28 kg/cm of stall torque, with an angular

resolution of 0.29 degrees, measured with a potentiometer,

which is particularly subject to wear and tear. During the

experiments, the motors were operated with a control loop

of 100Hz.

1) Dynamic Movement Primitives:

The movements on the stems are generated using dynamic

movement primitives (DMP). DMPs are parameterized dynam-

ical systems introduced by Auke Ijspeert et al. [22]. They

are computed from set of non-linear equations, that provides

guarantees of smoothness, convergence, and robustness to

perturbation. We chose DMPs, and the specific parametrization

we explain below, because it allowed to express many different

arm trajectories with a compact description. We use the

2fabien.benureau.com

Fig. 2. Our robots sports 3 RX-64 servomotors from the base, then 3 RX-28
and a reflective marker at the tip.

implementation of Freek Stulp [25], based on [23] with the

sigmoid variation of [24].

DMPs are based on damped spring dynamics, perturbed by

a forcing term (equation 1), allow arbitrary smooth movements

between start- and end-points. The forcing term is a sum

of linear functions, each with a slope ai offset bi, and

each weighted by a normalized gaussian activation function

Φi(st) with center ci and witdh σi (equation 3 and 4). st is

the phase of the forcing term, described by an exponential

decay term (equation 2. Those equations does not present the

more complex case we used, where the sigmoid variation is

included, see [24] for more details. In the following equations,

τ is a temporal scaling factor, α and β are constant and g is

the target state.

τ ẍt = α(β(g − xt)− ẋt) + ft (1)

τ ṡt = −αst (2)

Φi(st) = e
−

(st−ci)
2

2σ2
i (3)

ft =

∑N

i=0
Φi(st)(aist + bi)
∑N

i=0
Φi(st)

st (4)

In our setup, the start- and end-points are the same (g = x0),

and correspond to the motor being in the zero position (de-

picted in figure 3). We used 2 basis functions per motor, with

c0 and c1 fixed respectively at 1/3τ and 2/3τ , with τ = 5s. σ0

and σ1 were shared by all motors. Each motor had independent

a0, a1, b0, b1 parameters. With 6 motors, the motion trajectory

of the robot can thus be described using a vector of dimension

26. After solving and integrating the dynamical system, we

obtain each motor angular position in function of time. We set

the ranges of the parameters so that 95% of trajectories would

fall in between the angles the motor were able to produce, and

clipped the rest to legal motor values.

Before executing the motion on the robot, we checked for

self-collisions. If they are present, the trajectory is truncated

to just before the collision to avoid damage.

2) Hybrid approach:

The robot has an reflective marker at the tip, which allows

to capture its position at 120Hz during the movement using

an OptiTrack Trio camera system, that has a sub-millimeter

accurarcy. A virtual marker then replays the trajectory in a

simulation where a virtual object has been put. The marker

is the only object from the camera that is transported to the

simulation, so it is the only part of the robotic arm that can

collide with the object.

This hybrid approach between real hardware and simulated

interaction yields many advantages: it is simpler, the robot

never experience physical collisions, the precise measurement

of the motion of the object does not require equipment. It also

allow to create many different learning tasks, and allow the

setup to be reproduced more easily. Yet, it also has problems.

The interaction with the object is a poor match for what would

happen in reality, and there is no kinesthetic feedback from

the interaction with the object. Those problems are exacerbated

with movements that push the object towards the ground.

3) Virtual environment:

For the interaction simulation, we used the robot simulator

V-REP (Virtual Robot Experiment Platform). A simulation

scene contains a virtual marker able to replay the captured

trajectory. The marker only collides with the object, and does

not interact with the ground. The object is constrained in its

movements by the ground, the ceiling and four walls, forming

a cube of 300 mm width. At the end of the simulation,

a sensory feedback is computed and processed by sensory

primitives.

4) Sensory Primitive:

We consider a simple sensory primitive that returns the

displacement of the object projected on the ground at the end

of the simulation. The displacement is returned as a vector of

length 3: the displacement in x, in y, and a discreet dimension

of saliency, which has value 0 if no collision happened, and

1 otherwise.

B. Software Experiments

We replicated the complete setup in simulation (figure 3).

In simulation, the capture of the marker is ommited, but the

marker is still the only part of the robot that can interact with

the object.

At the end of the simulation, a sensory feedback is com-

puted and processed by sensory primitives.

C. Learning Tasks

For all learning tasks, we allowed 1000 interactions, and

fixed Kboot to 300, pgoal to 90%, prandom to 80% and ptransfer to

50%.

We consider 2 differents tasks on the hardware setup, a

cube task and a ball task, with a width and diameter of 45mm

respectively. In simulation, we consider the same tasks, but

reduce the width and diameter to 25mm for added difficulty,

Fig. 3. The simulation environment, using ODE as the physic engine. All
motors of the stems are in position zero, which correspond to the start and
end position for each movement.

and another task cube 2, were the cube is moved to the right

side by four time its width.

Fig. 4. A reused motor commands for the source ball task generates a different
effect in the cube task. The motion of the marker (grey curve, with a dot for
the position of the first collision) is affected by the interaction with the object.
Red dots represent the position of the center of the object at fixed intervals.
The walls are not represented, but their effects is seen on the motion of the
ball.

For the tests, we consider an inverse model than compute the

nearest neighbor for each test goal, rather than using LWLR

(LWLR was used during the exploration phase). We generate

150 points uniformly distributed in SB with the saliency

dimension set to 1. Given a source task A and target task B
(henceforth, we use the notation A → B), compare the error

eB(t) and eB(t, A, ξA) for regular values of t (we sampled at

high frequency at the beginning, and then sampled every 25

interactions).

VI. RESULTS

A. Hardware Experiments

1) Effectiveness of reuse: Every combination of

source/target task for the ball and cube was run four

times on the setup, and additionally verified in simulation

(10 repetitions). Below are the error graphs for one run in

hardware (figure 5). All results were similar.

B. Simulation Experiments

1) Robustness of Reuse: To test the robustness of the reuse

against dissimilar tasks, we considered the cube → cube 2

Fig. 5. Reusing motor command yield dramatic benefit for early learning.
For each graph, the title give the source and target position, and the blue and
pink curves are represent the error of the target task without and with reuse
respectively. We can observe that the advantage of reuse in the cube target
task is maintained at the end of the 700 interactions, whereas in the ball target
task this advantage disapears after 400 iterations, occasioning even a negative
performance in the case cube → ball at time t = 700

scenario, were the cube is moved significantly to the right.

Most of the motor commands that were colliding with the cube

the cube task would not collide anymore in the cube2 task.

With the reuse, the performance is not significanlty impacted.

Fig. 6. Even in situations where is it not useful, the reuse is not detrimental
to the learning performance. Averaged error over 10 repetitions.

It is important to note that, as reuse use iteraction to reexe-

cute commands, the impact of using reuse for truly dissimilar

tasks is necessarily negative. Its impact however, is limited

since no bad data is introduced into learning. The negative

impact of reuse could also be mitigated by recognizing that

reuse does not create interesting observation quickly, and,

when provided, using environmental cue to determine when

two environments are similar.

2) Influence of Reuse: If we look at the distribution of

effects here represented as the end position of the objects on

the floor, we can observe several interesting things. Figure 7

shows the distribution for the cube task, the ball task and the

cube→ball task. For the two latter task, effects are broken

down by the type of exploration that generated them.

Looking at the ball task, we observe that random motor

babbling is expensive in interactions while producing very few

salient observations, here with a collision rate of about 3%

over 350+ interactions. Goal babbling has a collision rate of

more than 85%, over roughly twice as many interactions.

If the cube task is used as a source for the ball task, we

observe that the reuse is highly effective, but that it generate

effects skewed on one side, the same one that the effects of

cube are skewed on. Because the motor babbling generated

only 6 salient effects, the goal babbling exploration is heavily

influenced by the effects produced through reuse, and effects

produced at the end of learning for the cube → ball task

are still heavily skewed, a pattern that did not develop to

such a degree in the ball source task. This is an example of

development being guided by previous knowledge.

Fig. 7. The reuse of exploration trajectories can shape development. Here, the
ball is learned to be moved predominantly on the left in cube→ball, compared
to the unperturbed task ball. The cube source task displays a bias towards left
effects, and produces skewed reuse observations in the cube→ball task, that
have a lasting impact on the exploration. The number of salient effects versus
the total number of interactions is indicated for each graph.

VII. DISCUSSION

As it currently stands, our approach has several limitations:

• The motor commands are grouped and discriminated in

the sensory space. Yet, commands who generate effects in

the same sensory region might have very different learn-

ing benefits. Our method does not distinguish between

those.

• The setup of this article produced a constant effect in

the majority of the motor space, and lots of variety in a

small region of it. This inherently favors the approach

we chose. We are currently experimenting with more

complex situations to better evaluate the robutness of our

algorithm.

• We only considered one learning algorithm in this article

(optimization of a LWLR predictor using L-BFGS-B). We

are currently running experiments with different learning

algorithms to access robustness.

• In the experiments we arbitrarily fixed the parameters

Kboot, pgoal, prandom, and ptransfer (before the results were

produced). An empirical analysis of the influence of

those parameters would be needed to better understand

the dynamic of the transfer mechanism. Given that an

interaction of the robot takes significant time, we were

limited in the experiments will could conduct. We were

able to deploy our simulation on a cluster, and plan to do

such an analysis in the future.

ACKNOWLEDGEMENTS

This work was partially financed by the ANR MACSi and

the ERC Starting Grant EXPLORERS 240 007. Computing

hours for running simulations were graciously provided by

the MCIA Avakas cluster.

REFERENCES

[1] W.S. Cleveland, S.J. Devlin, ”Locally-Weighted Regression: An
Approach to Regression Analysis by Local Fitting”. Journal of
the American Statistical Association 83(403):596610, 1988.

[2] C. G. Atkeson, A. W. Moore, S. Schaal, ”Locally Weighted
Learning”, Artificial Intelligence Review, 11(1):11-73, 1997,
doi:10.1023/A:1006559212014

[3] T. Munzer, F. Stulp, O. Sigaud, ”Non-linear regression algo-
rithms for motor skill acquisition: a comparison”, JFPDA14,
2014.

[4] R. Penrose. ”A generalized inverse for matrices”, Proceeding
of Cambridge Philosophical Society 51:406-413, 1955.

[5] R. H. Byrd, P. Lu and J. Nocedal, ”A Limited Memory
Algorithm for Bound Constrained Optimization”, SIAM Journal
on Scien. and Stat. Computing 16(5):1190-1208, 1995

[6] C. Zhu, R. H. Byrd and J. Nocedal, ”L-BFGS-B: Algorithm
778: L-BFGS-B, FORTRAN routines for large scale bound
constrained optimization”, ACM Transactions on Mathematical
Software, 23(4):550-560, 1997

[7] A. Baranes, P-Y. Oudeyer, ”Active Learning of Inverse Mod-
els with Intrinsically Motivated Goal Exploration in Robots”,
Robotics and Autonomous Systems, 2012

[8] M. Rolf, ”Goal Babbling for an Efficient Bootstrapping of
Inverse Models in High Dimensions”, PhD Thesis Bielefeld
University, 2012

[9] M. Lopes, T. Lang, M. Toussaint, P-Y. Oudeyer, ”Exploration
in model-based reinforcement learning by empirically estimat-
ing learning progress.”, Neural Information Processing System
(NIPS), 2012

[10] F. Benureau, P-Y. Oudeyer, ”Autonomous Reuse of Motor
Exploration Trajectories”, In Proc. ICDL 2013, Osaka, Japan.

[11] F. Fernández, M. Veloso. ”Probabilistic policy reuse in a rein-
forcement learning agent.” In Proceeding of the fifth conference
on Autonomous Agents and Multiagent Systems, ACM, 720-
727, 2006

[12] M. E. Taylor, N. K. Jong, P. Stone, ”Transferring instances for
model-based reinforcement learning.” Machine Learning and
Knowledge Discovery in Databases. Springer Berlin Heidel-
berg, 488-505, 2008

[13] M. E. Taylor, P. Stone, ”Transfer learning for reinforcement
learning domains: A survey.” The Journal of Machine Learning
Research, 10, (2009) 1633-1685

[14] S. J. Pan, Q. Yang, ”A Survey on Transfer Learning”, IEEE
Transactions on Knowledge and Data Engineering, 10(1345-
1359), 2010

[15] L. Torrey, J. Shavlik, ”Transfer Learning”, Handbook of Re-
search on Machine Learning Applications, 2009

[16] F. Doshi-Velez, G. D. Konidaris, ”Transfer Learning by Dis-
covering Latent Task Parametrizations.” In the NIPS 2012
Workshop on Bayesian Nonparametric Models for Reliable
Planning And Decision-Making Under Uncertainty, 2012.

[17] M. G. Madden, T. Howley, ”Transfer of experience between re-
inforcement learning environments with progressive difficulty.”
Artificial Intelligence Review 21.3-4 (2004) 375-398.

[18] S. Barrett, M. Taylor, P. Stone. ”Transfer learning for reinforce-
ment learning on a physical robot.” In The Ninth International
Conference on Autonomous Agents and Multiagent Systems -
Adaptive Learning Agents Workshop, 2010.

[19] S. Thrun and T. Mitchell. ”Lifelong Robot Learning”. Robotics
and autonomous systems, 1995.

[20] D. L. Silver, Y. Qiang, L. Lianghao, ”Lifelong Machine Learn-
ing Systems: Beyond Learning Algorithms.” 2013 AAAI Spring
Symposium Series, 2013.

[21] J. Konczak, ”On the notion of motor primitives in humans and
robots”, Lund University Cognitive Studies, 2005

[22] A. J. Ijspeert, J. Nakanishi, S. Schaal, ”Movement imitation
with nonlinear dynamical systems in humanoid robots” Pro-
ceedings. ICRA02. IEEE International Conference on Robotics
and Automation, 2:13981403, 2002.

[23] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal,
”Dynamical movement primitives: Learning attractor mod-
els for motor behaviors.” Neural Computation, 25(2):328373,
2012.

[24] T. Kulvicius, K. Ning, M. Tamosiunaite, F. Worgotter, ”Joining
movement sequences: Modified dynamic movement primitives
for robotics applications exemplified on handwriting”. IEEE
Transactions on Robotics, 28(1):145-157, Feb 2012

[25] F. Stulp, DmpBbo – A C++ library for black-box optimization
of dynamical movement primitives, https://github.com/stulp/
dmpbbo.git, 2014

https://github.com/stulp/dmpbbo.git
https://github.com/stulp/dmpbbo.git

	MOTIVATION
	PROBLEM
	RELATED WORK
	METHOD
	Exploration and Learning for Source Tasks
	Forward Model
	Inverse Model
	Source Task Exploration

	Exploration in Target Tasks
	Processing the Trajectory
	Exploration

	EXPERIMENTS
	Hardware Experiments
	Dynamic Movement Primitives
	Hybrid approach
	Virtual environment
	Sensory Primitive

	Software Experiments
	Learning Tasks

	RESULTS
	Hardware Experiments
	Effectiveness of reuse

	Simulation Experiments
	Robustness of Reuse
	Influence of Reuse

	DISCUSSION

