N
N

N

HAL

open science

Scheduling computational workflows on failure-prone
platforms

Guillaume Aupy, Anne Benoit, Henri Casanova, Yves Robert

» To cite this version:

Guillaume Aupy, Anne Benoit, Henri Casanova, Yves Robert. Scheduling computational workflows
on failure-prone platforms. [Research Report] RR-8609, ENS Lyon; LIP; INRIA; CNRS; Université

Lyon 1. 2014. hal-01075100

HAL Id: hal-01075100
https://inria.hal.science/hal-01075100

Submitted on 16 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01075100
https://hal.archives-ouvertes.fr

Scheduling
computational workflows

on failure-prone
platforms

Guillaume Aupy, Anne Benoit, Henri Casanova, Yves Robert

RESEARCH
REPORT

N° 8609

October 2014

ISSN 0249-6399 ISRN INRIA/RR--8609--FR+ENG

Project-Team ROMA

V4

: in]armu!ics,mathemutics

Scheduling computational workflows on
failure-prone platforms

Guillaume Aupy*, Anne Benoit*, Henri Casanoval, Yves
Robert*#

Project-Team ROMA

Research Report n® 8609 — October 2014 — 30 pages

Abstract: We study the scheduling of computational workflows on compute resources that
experience exponentially distributed failures. When a failure occurs, rollback and recovery is used
to resume the execution from the last checkpointed state. The scheduling problem is to minimize
the expected execution time by deciding in which order to execute the tasks in the workflow and
whether to checkpoint or not checkpoint a task after it completes. We give a polynomial-time
algorithm for fork graphs and show that the problem is NP-complete with join graphs. Our main
result is a polynomial-time algorithm to compute the execution time of a workflow with specified
to-be-checkpointed tasks. Using this algorithm as a basis, we propose efficient heuristics for solving
the scheduling problem. We evaluate these heuristics for representative workflow configurations.

Key-words: scheduling; workflow; fault-tolerance; reliability.

* LIP, Ecole Normale Supérieure de Lyon, INRIA, France
T University of Hawai‘i, USA

¥ Institut Universitaire de France

§ University of Tennessee Knoxville, USA

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Ordonnancement de flux de calculs sur
plateformes sujettes a pannes

Résumé : Nous étudions I'ordonnancement de flux de calculs sur des machines
sujettes a des pannes qui suivent une loi exponentielle. Quand une faute arrive,
la plateforme récupere son état lors du dernier point de sauvegarde de données.
Le probleme est ici de minimiser ’espérance du temps total d’exécution en
choisissant I'ordre d’exécution des taches ainsi que les taches dont la sortie est
sauvegardée (checkpoint). Nous proposons un algorithme polynomial pour les
fork ainsi qu’une preuve de NP-complétude pour les joins. Le résultat principal
de ce travail est un algorithme polynomial pour évaluer le temps d’exécution
d’un DAG ordonnancé. Cet algorithme permet I’évaluation d’heuristiques pour
résoudre le probleme d’ordonnancement, nous en proposons et les évaluons sur
des flux de calculs représentatifs de configurations actuelles.

Mots-clés : ordonnancement; workflow; tolérance aux fautes.

Scheduling computational workflows on failure-prone platforms 3

1 Introduction

Resilience has become a key concern when computing at large scales [1]. En-
rolling more processors in an application execution leads to more frequent ap-
plication failures. (In this work we use the term “processor” in a broad sense to
mean a processing elements of the platform on which one can run a portion of a
parallel application, e.g., a multi-socket multi-core blade server.) First, making
each individual processor reliable, for instance via redundant hardware compo-
nents, is costly. Since costs are highly constrained when designing a parallel
platform, one must use commercial-of-the-shelf (COTS) processors, the reliabil-
ity of which is driven by the market. Consequently, each processor has a Mean
Time Between Failure (MTBF), say p, that varies from a few years to a cen-
tury. Second, when enrolling p processors to execute a tightly-coupled parallel
application, a failure on any of the processor will cause an application failure.
The overall MTBF of this set of processors is u/p, which can be low (a few
hours or less) when p is large. As a result, no matter how reliable the individual
processors, there is a value of p above which failures become common rather
than exceptional events.

The above considerations have prompted decades of research in the area
of fault-tolerant computing. The most well-known approach is checkpoint-
rollback-recovery, by which application state is saved to persistent storage at
different points, e.g., periodically, throughout execution [2, 3]. When a fail-
ure occurs, the application execution can be resumed from the most recently
saved such state, or checkpoint. A well-studied question is that of the optimal
checkpointing strategy [2, 3, 4]. Too infrequent checkpoints lead to wasteful re-
computation when a failure occurs, but too frequent checkpoints lead to over-
head during failure-free periods of the application execution. Checkpointing
can happen in a coordinated or uncoordinated manner, and the advantages and
drawbacks of both approaches are well-documented [5]. Checkpointing can be
implemented in a way that is agnostic to the application, in which case full
address space images are saved as a checkpoint [6, 7]. Alternately, checkpoint-
ing can be application-aware so that only the application data truly needed
to resume execution is saved. This latter approach is more efficient because
less data needs to be saved, but requires modifying the implementation of the
application [8].

In this work, we study the execution of workflow applications on large-scale
platforms, i.e., subject to processor failures during application execution. An
application is structured as Directed Acyclic Graph (DAG) in which each ver-
tex represents a tightly-coupled parallel task and each edge represents a data
dependency between tasks. This general model is relevant for many scientific
workflows [9]. The difficulty of scheduling graphs of parallel tasks, or applica-
tions with “mixed parallelism”, without considering processor failures, has long
been recognized [10]. The difficulty comes from the need to not only decide
on a traversal of the task graph, as in classical scheduling problems, but also
to decide how many processors should be assigned to each task. In addition,
complex data redistributions must take place so that output data from one task

RR n° 8609

Scheduling computational workflows on failure-prone platforms 4

can serve as input data to another task when both tasks do not necessarily use
the same number of processors. It is not clear how to model redistribution costs
in practice and thus how to make judicious scheduling and processor alloca-
tion decisions [11, 12]. Because we consider processor failures, which makes the
scheduling problem even more difficult, in this work we we opt for a simplified
scenario in which each task uses all the available processors. In other words, the
workflow DAG is linearized and the tasks execute in sequence, using the whole
fraction of the platform that is dedicated to the application. This scenario is
representative of a large class of compute-intensive scientific applications whose
workflow is partitioned into (typically large) tightly-coupled parallel computa-
tional kernels. Each parallel task is executed across all available processors,
and produces output data that is kept in memory until executing its immediate
successors in the application DAG. Executing each task on all processors makes
it possible to avoid complex data redistributions among tasks that use different
numbers of processors [12]. While it would be possible to used checkpoint-roll-
back recovery within each task, it would require either saving large checkpoints
(application-agnostic) or to modify the implementation of the task (application-
aware). Given that both approaches have drawbacks, we assume non-modified,
and thus non-fault-tolerant, implementations for the tasks. Fault-tolerance must
then be achieved by checkpointing the output data generated by each task once
it completes. If there is a failure during a task execution, one must recover from
the most recently saved checkpoints on all paths from the failed task upward to
an entry task of the DAG, re-execute non-checkpointed predecessors of the task
if necessary, and then re-execute the task itself. This is repeated until the task
is successfully executed and its output possibly checkpointed.

We study the following problem. We are given a DAG of tasks and for each
task we know how long it takes to compute its output, how long it takes to
checkpoint its output, and how long it takes to recover its checkpointed output.
We are given a platform with a given failure rate on which we want to execute the
application. In which order should the tasks be executed? Which tasks should
be checkpointed? We call an answer to these two questions a schedule. The
objective is to find a schedule that minimizes expected application execution
time, or expected makespan. We call this problem DAG-CHKPTSCHED.

To the best of our knowledge, DAG-CHKPTSCHED has only been answered
for the very specific case in which the DAG is a linear chain [13]. For general
DAGs, the problem is more difficult. In fact, even computing the expected
makespan of a given schedule is difficult. This is surprising, because the ordering
of the tasks is given by the schedule as well as the location of all checkpoints.
But when computing the expected execution time of a task, one has to account
for the state of all its predecessors, which depends upon when the last failure
has occurred. In this context, we make the following contributions:

e We provide a polynomial-time algorithm for computing the expected makespan
of a schedule. This algorithm is the fundamental basis for designing and
comparing heuristics that find efficient schedules for arbitrary DAGs.

e We propose a set of heuristics for solving DAG-CHKPTSCHED for gen-

RR n° 8609

Scheduling computational workflows on failure-prone platforms 5

eral DAGs. To the best of our knowledge, these heuristics are unique in
the literature, since previous work lacked an algorithm to estimate the
makespan of a schedule (except when the DAG is a linear chain [13]).

o We show that although DAG-CHKPTSCHED can be solved in polynomial
time for fork DAGs it is NP-complete for join DAGs. This result shows
the intrinsic complexity of DAG-CHKPTSCHED, but is largely expected,
as both the linearization of the DAG and the location of the checkpoints
must be determined.

The rest of this paper is organized as follows. Section 2 provides an overview
of related work. Section 3 is devoted to formally defining the framework and all
model parameters. Section 4 gives our main theoretical contributions. Section 5
presents a set of heuristics for solving the problem with DAGs. These heuristics
are evaluated experimentally in Section 6. Finally, Section 7 outlines our main
findings and discusses directions for future work.

2 Related work

Resilience to faults is one of the major issues for current and upcoming large-
scale parallel platforms. The most common fault-tolerance technique used in
high performance computing is checkpoint and rollback recovery [6, 7, 5, 2]. A
large body of work has studied periodic coordinated checkpointing for a single
divisible application. Given the simplicity of the divisible model, a wide range of
results are available including first order formulas for the checkpointing period
that minimizes execution time [2, 3] or more accurate formulas for Weibull fail-
ure distributions [14, 15, 16]. The optimal checkpointing period is known only
for exponential failure distributions [17]. Dynamic programming heuristics for
arbitrary distributions have been proposed [13, 17]. Gelenbe and Derochette [4]
give a first-order approximation of the optimal period to minimize average re-
sponse time. They compare it to the period obtained by Young [2] in a model
where they do not consider one single long application and a fully-loaded system,
but instead multiple small independent applications that arrive in the system
following a Poisson process. Finally, Gelenbe and Herndndez [18] compute the
optimal checkpointing period that minimizes computational waste in the case
of age-dependent failures: they assume that the failure rate follows a Weibull
distribution and that each checkpoint is a renewal point.

Few authors have studied the resilience problem with workflows when the
checkpoints can only take place at the end of each task. Bouguerra et al. [19]
have studied a restricted version of DAG-CHKPTSCHED when the workflow
is a linear chain (with a single processor). They propose a greedy heuristic
to minimize the total execution time in case of arbitrary failures. As already
mentioned, Toueg and Babaoglu [13] have computed the optimal execution time
for a linear chain of tasks using a dynamic programming algorithm to decide
which tasks to checkpoint.

RR n° 8609

Scheduling computational workflows on failure-prone platforms 6

Our work is not restricted to linear chains and, as seen in upcoming sections,
removing this restriction makes the problem fundamentally more difficult. In
fact, even when a schedule is given (hence both a linearization of the DAG and
a list of tasks to checkpoint), it is hard to determine which tasks to re-execute
and which tasks to recover from after one or more failures have occurred during
the execution.

3 Framework

We consider a (subset of a) parallel platform with p processors, where each
processor is a processing element that is subject to its own individual failures.
When a failure occurs at a processor, this processor experiences a downtime
before it can be used again. In a production system, this downtime corresponds
to replacing the processor by a logical spare. Like most works in the literature,
we simply assume that a downtime lasts D seconds, where D is a constant.
We assume that failures are i.i.d. (independent and identically distributed)
across the processors and that the failure inter-arrival time at each processor is
exponentially distributed with Mean Time Between Failures (MTBF) pproc =
1/)\proc~

On this set of processors, we want to execute a task-parallel application that
is structured as a DAG G = (V, E), where V is a set of vertices and F a set
of edges. Each vertex is a tightly coupled data-parallel task that is executed
on all p available processors. Consequently, in all that follows, we can view
the set of processors as a single macro-processor that experiences exponentially
distributed failures with parameter A = pAproc, i-e., with MTBF g = piproc/p.
Each edge corresponds to a data dependencies between two tasks. Since no two
tasks run simultaneously, the sequence of executed tasks corresponds to one
of the many linearizations of the DAG, i.e., task sequences that respect data
dependencies. The DAG has n vertices, and the task corresponding to the i-th
vertex is denoted by T;. A failure-free execution of task T; on the p processors
takes w; seconds (the task’s computational weight). This execution produces
an output that can be checkpointed in ¢; seconds, and can be recovered from
a checkpoint in r; seconds. If task T; executes successfully, then its successor
tasks in the DAG can begin execution immediately since T;’s output data is
available in memory (distributed over the p processors). If the output of a task
is saved to a checkpoint, we say that the task is checkpointed.

If a failure happens during the execution of T;, then T; must be re-executed.
This re-execution requires that the input data to T; be available in memory.
For each reverse path in the DAG from T; back to an entry task, one must
find the most recently executed checkpointed task. One must then recover
from that checkpoint, and re-execute all the tasks that were executed after that
checkpointed task, i.e., all tasks whose output was lost and that are ancestors
of T; along the reverse path. It may be that on such a path from T; to an
entry task, no checkpointed task is found, in which case one must begin by
re-executing the entry task. An example DAG is shown in Figure 1, for which

RR n° 8609

Scheduling computational workflows on failure-prone platforms 7

Figure 1: Example DAG. Tasks whose output is checkpointed (75 and Ty) are
shadowed.

tasks whose output is checkpointed are shadowed (T3 and T,). Consider the
following linearization of the DAG: ToT3Th ToTyT5TsT7. Let us assume that the
first and only failure occurs during the execution of T5. To re-execute T5, one
needs to recover the checkpointed output of T3. To execute Tg, one then needs
to recover the checkpointed output of T, and use the output of T that is now
available in memory. This sequence of recoveries and re-executions must be
re-attempted until Ty executes successfully. Finally, the output of 75 was lost
due to the failure, and no task is checkpointed on the reverse path from 77 to
Ti1. One must therefore re-execute 17, Ts, and then finally 7%. This example is
for a single failure occurrence and yet is not straightforward. This hints at the
complexity of the problem in the general case.

As seen in the example, the DAG can have multiple entry tasks. The entry
tasks (sources), when restarted, do not have to recover any output from pre-
decessors. In practice, each entry task would read the application’s input data
from disk, the overhead of which is included in the task’s weight. The DAG can
also have multiple exit tasks (sinks). As soon as an exit task completes, it is
removed from the DAG as well as any of its ancestors that have no remaining
exit tasks as descendants. In practice, each exit task would write the applica-
tion’s output data to disk, and here again this overhead is accounted for in the
exit task’s weight.

Executing the DAG in a fault-tolerant manner boils down to re-executing
all the work that has been lost due to a failure, restarting from the most recent
checkpoints if found and re-executing an entry task otherwise. We enforce that
the most recent checkpoint be used when recovering from a failure. It would be
conceivable to ignore the checkpoints and, for instance, always re-execute the
path completely from each entry task. This is only useful when the w; values
are small and the r; values are large. Such situations are of dubious practical
interest. It makes little sense to checkpoint a task if the time to recover the
checkpoint is known to be longer than the time to re-execute that task. If this
were the case, then the task could be fused with some of its predecessors for

RR n° 8609

Scheduling computational workflows on failure-prone platforms 8

instance. So in this work, when recovering from a failure, we enforce the use of
the most recent checkpoints whenever possible.

Formally, let E[t(w; ¢; r)] denote the expected time to execute a computation
that would take w seconds in a fault-free execution and ¢ seconds to checkpoint
the output of this computation, with a recovery time of r seconds if a failure
occurs during computation or checkpointing. If failures are exponentially dis-
tributed with mean 1/, and the processor downtime is D, it is shown in [17, 20]
that:

A

We make extensive use of this notation in this work. It is crucial to note that the
above formula is valid even if failures occur during checkpointing or recovery.
Many works in the literature assume that checkpointing and recovery are failure-
free, an assumption that is not realistic for large numbers of processors.

We define a schedule as a linearization of the DAG in which, for each task, it
is specified whether the task’s output should be checkpointed. The objective is
to find the schedule that has the minimum expected makespan. Note that if A =
0, i.e., if there are no failures, then one should do no checkpointing and all the
linearizations of the DAG are equivalent. However, in the presence of failures,
there is the usual trade-off between spending too much time checkpointing or
spending too much time recovering and re-executing.

E[t(w;c;r)] = (1 + D) (eA(“’JFC) — 1) . (1)

4 Theoretical results

In this section, we present several theoretical results. First, in Section 4.1,
we establish the NP-completeness of DAG-CHKPTSCHED. Then, Section 4.2
provides our key result that DAG-CHKPTSCHED for general DAGs belongs in
NP: we give a polynomial-time algorithm to compute the expected makespan
of a given schedule.

4.1 Complexity
4.1.1 Fork DAG

Theorem 1. DAG-CHKPTSCHED for a fork DAG can be solved in linear time.

Proof. We consider a fork DAG with a source task Ty, and n sink tasks 17, ..., T,.
If Ty is checkpointed, then when T; fails we recover the checkpoint and try
again. If Ty is not checkpointed, then we re-execute Ty but without re-
executing the T; tasks that have already completed. The question is to decide
whether or not T, should be checkpointed, and to decide for the ordering of
the n sink tasks.

We renumber the tasks so that task 7 is the it task executed in the lin-
earization of the DAG. Let X; be the random variable that corresponds to the
execution time between the end of the first successful execution of task 7;_1 and

RR n° 8609

Scheduling computational workflows on failure-prone platforms 9

the end of the first successful execution of task T;. Let Xy be the random vari-
able that corresponds to the execution time of Ty followed by a checkpoint.
Note that the case where Ts.. is not checkpointed is equivalent to considering
Csre = 0, Tgre = Were. The expected execution time of the DAG is E[>_" , X;].

By definition, E[X] = E[t (wsrc; Csre; 0)]. Furthermore, it is straightforward
to see that at the beginning of interval X;, the output of Ty, is still available
in memory (meaning that there has been no fault between the end of the last
recovery —or execution— of Ty and the beginning of T;). As a result E[X;] =
E[t (wi; 0; rerc)]-

The execution time of the schedule does not depend on the linearization of
the tasks. This is because, with the assumption that failures are exponentially
distributed, the set of tasks that follow the checkpoint can be executed in any
order.

In conclusion, if E[t (wee; 0;0)]+ >0 B[t (wi; 0; wsee)] > E[t (wsre; Csre; 0)] +
Yoi Elt (w;; 0; 7sre)] then Ty should be checkpointed, otherwise it should not.

O

4.1.2 Join DAG

Let us consider a join DAG with a single sink task Ty, and n source tasks
T1,...,T,. We denote by Ickpr, resp. Incker, the subset of {T1,...,T,} com-
posed of the tasks that are checkpointed, resp. not checkpointed.

We first propose with Lemma 1 and 2 some structure of the optimal solution.

Lemma 1. In an optimal schedule, the tasks in Ickpr are executed before the
tasks in Inckpr- When a failure occurs, the recoveries from the previously eze-
cuted tasks in Icxpr are executed after the last task from Ickpr.

Lemma 2. Given the two sets Ickxpr and Inckpr, we can compute the optimal
expected makespan, which is achieved by scheduling the tasks in Icgpr n non-
increasing values of g(i), where

) _ e*)\(wi+ci+ri) +

g(Z —Ar; 67}\(’[[),;#01)

e
Proof. The order in which the tasks from Inckpr and recoveries are executed
does not matter. This is because all these must be executed consecutively
without failures, followed by Tink. The probability of a correct execution simply
depends on the sum of the corresponding w; and ¢;, not their order.

Let us now consider the expected execution time for a given schedule
order o of the tasks from Ickpr (meaning that in the schedule, Ty(1y is
scheduled before T5(2), ..., scheduled before Ty (|7,)))-

The time to execute a CKPT task and its checkpoint is independent of the
rest of the computation and is equal to

E[t(w;,0;¢;)] = (/1\ + D) (e’\(w"“” — 1) .

RR n° 8609

Scheduling computational workflows on failure-prone platforms 10

The expected time to execute the NCKPT tasks, the recoveries, and Ty, de-
pends on when the last failure occurred. This is because the number of recov-
eries to perform will differ depending on when that failure occurred. Let us call
Wxcker = Zz‘e Inenes Wi T Wsink, this is a constant amount of work that needs to
be done regardless of when the last fault occurred:

e If it occurred during the computation of the NCKPT tasks, recoveries or
sink, then all recoveries should be done and the expected time to execute
the NCKPT tasks, the recoveries, and Tgj, is:

to _ (i\ + D> <6A(WNCKPT+EI-€ICKPT "'i) _ 1>

e If it occurred during the computation of the k" checkpointed task (event

Ey), then we first execute only the k — 1 first recoveries. With probabil-
k—1

ity p,(f) = e_>‘<WNC“""‘+Zi=1 To(i)) there is no subsequent failure, otherwise

there is a failure and all recoveries should be re-executed. The expected

time is thus:

k—1
t]ig) — p](:') (WNCKPT + ZTU(Z)> + <1 _ pl(co')> X
i=1
k—1
(E[tlost(WNCKPT + Z Tg(i))] + D+ to)

=1
- (1—p§;’)) (;\—&—D—i—to) :

because E[tjpst(w)] = 1/X —w/ (e —1).

Finally, we have seen in Lemma 1 that a schedule proceeds in two distinct
phases: first we execute the CKPT tasks (with known execution time), then we
execute the NCKPT tasks, necessary recoveries and sink. At the end of the first
phase depending on when the last fault occurred, \Eve) are in either one of the
g
1

events Fy,..., B, |- Precisely, with probability ¢;"" we are in the event E;,

where
4 =

| Tegepr|
(o) (1 _ e_)‘(wa(i)+ca(i))) e~ S (wo 5y Feo(s))

{ (o) _ e*’\ZLISS"T‘(wouﬁ%(j))
Gz =

(@) and the

Finally, the expected execution of the second phase is Zg{”‘ qi(o)tl

total expected execution time is:

to= Y <i - D) (e“w”‘fi)) + lli:ml g\ (1 —pz(»”)) (/1\ +D + to)

1€ lcker i=1
1)\(W +Z)|ICKPT| () ()
_ (= A(wi+c;) NCKPT i€Tggpy T o (o
ta—(/\+D> 'g: (e)+e te 2; 0 (1-9)
1&lcoker 1=

(2)

RR n° 8609

Scheduling computational workflows on failure-prone platforms 11

Now that we have computed the expected execution time for a given order,
let us focus on finding the optimal order: for a given schedule o of the
CKPT tasks, let us compare its execution time to the same schedule where T, ;)
and T, ;1) are permuted (¢ such that ¢(i) = o(i + 1), ¢(i + 1) = o(i) and
@(7) = o(j) for all other j). One can notice that for j # 4,7+ 1, then q(a) = qj(d))

and tg-o) = t§¢). Therefore:

to —ty _ 7@ (1 _p(o>) _ @ (1 _p(¢>>

L4+ D+t
+4 0 (1-90) — a8 (1-22))

Let us first consider the case where i # 1. For convenience we define R =
Z;;ll To(5) and W = ZLI(:L’:%(U)U G) t ¢o(j)) (W = 0 when i + 1 = |Ickpr])-
Then:

- te —tg _ (1 _ e—A(wa<i)+ca(¢>)) e_)\<W+wa(i+1)+ca(i+1)) (1 _ e—A(W,\ch.w—&-R))
5+ D+t
(—A(wo(i+1)+co(i+1))) 6_)‘(W+wa(i)+co(i)) (1 _ e_A(WNCKI‘TJFR))

(—e)\(wa(1+1)+ca(1+1))> e MW (1 _ e*A(WI\'CKpT+R+TH(i))>

= (11— e ten)) AW (1 AWt itracen)

AW B
< (te —ty) _ (6 AWo(i41) +oi4n)) _ 67A(w<,(i)+c,,(i))) (1 _ ef)\(WNcKpTJrR))
Y + D+ tO
(e—)\ro(1+1) _)\T(f(’l:)) e_A(W,\TCKP'I'J'_R)

(e (We(i41)FCo(it1)) _ 6_>‘(wa(i)+co(i))>

+

- o<i+1)+wa(i+1)+60(i+1)) N e*)\(rg(i)+wa('i)+co(i))) eiA(WNCKPT+R)
AWxewr+B) (g(0(i 4 1)) — g(o(i)))

where g : i+ e Awiteitr) 4 e=Ari _ g=Awite) - Ip the case when i = 1,
similarly we obtain:

- to — t¢ _ e_)\(W+wo(i+l)+co(i+1)) (1 _ e_)\(WNL‘,x<|"1'+R))
5+ D+t

_ e_)\(W"l‘wo(i)"Fco(i)) (1 _ e—X(WNcKp»r-&-R))
4 (1 _ e_A(wa(i+l)+ca(i+l))> e~ MW (1 _ 6*/\(WNC;<FT+R+7’¢(7:)))
_ (1 _ E*A(wauﬂrca(i))) e W (1 _ e—A(WNcKrvr-FR-FTU(iH)))

M (ty —ty)

% iy — o~ MWxcwn+R) (g(o(i+ 1)) — g(a(d)))

RR n° 8609

Scheduling computational workflows on failure-prone platforms 12

We conclude that in the optimal schedule, the set of CKPT tasks should be
sorted by non-increasing g values. O

The first consequence of Lemma 1 and 2 is that given the two sets (Ickpr, INCkpr)s
we can construct the optimal solution in polynomial time. Then two other con-
sequences of Lemma 2 and Equation (2) are:

Corollary 1. When r; = r and ¢; = c¢ for all i, there is a polynomial-time algo-
rithm to solve DAG-CHKPTSCHED for a join DAG: sort the tasks by decreasing
w;, and compute the expected makespan with 1,2,...,n checkpoints. Return the
best solution.

Corollary 2. When r; = 0 for all i, task ordering does not matter. The optimal
expected execution time is then:

& +D)(S (00— 4 (M e w#wsmw_l)) . ®

i€ lcker
Theorem 2. DAG-CHKPTSCHED for join DAGs is NP-complete.

Proof. Consider the associated decision problem: given a join DAG, A, and a
bound on the expected execution time, can we find the sets Iokpr and Inckpr,
and the order in which the tasks are executed such that the bound on the
expected execution time is respected? The problem is clearly in NP: we have
shown in Lemma 2 that given the sets Ickpr and Inckpr We can compute the
expected execution time in polynomial time (we have an analytical formula).

To establish the NP-completeness we use a reduction from SUBSET-SUM [21].
Let Z; be an instance of SUBSET-SUM: given n strictly positive integers wy, . .., wy,
and a positive integer X, does there exist a subset I of {1,...,n} such that
Sierwi =X? Let S =" w.

We build the following instance Z, of our problem. We have a join DAG

with n source tasks 771, ...,T, and a sink Tg, with wgn = 0 and, for all tasks
T;i=1.n,

w; = Wy

= (X —w)+ 3log(Aw; +e*¥)

r, = 0

We assume that A > minli w7 S0 that for all 4, ¢; > 0. Finally, we assume that
the bound on the expected execution time is: tmin = e (S—X)+ erX — 1.

Let us show that Zs has a solution (Ickpr, Incker) if and only if we can find
a set of tasks Inckpr such that), Ivoe Wi = X We will thus have shown that
75 has a solution if and only if Z; has one, the set Incxpr from Z5 being the set

I from Z; if such a set exists.

RR n° 8609

Scheduling computational workflows on failure-prone platforms 13

Let us call W =7,
pected execution time is:

E[T] — Z (e)\(wri-ci) _ 1)+(€)\(ZiEINF”T wiersink)_l)
ie](‘,xw
= Z)\e’\Xwi + (eAW — 1)
iEICKP'I'

=AM (S -W)+eM -1

w;. We have seen in Equation (3) that the ex-

We can differentiate E[T] with respect to W: E[t(W)] = —Ae*X + Ae*'. This
function is increasing, and equal to 0 when W = X. Therefore E[T] is min-
imum when W = X, and its value is exactly tn,in. We conclude that that
(Icker, Incker) is a solution to Zs if and only if) w; = X. O

S I,\ICKPT

4.2 Evaluating a schedule for a general DAG

In this section, we consider a general DAG and a given schedule that specifies a
linearization of the DAG and which tasks are checkpointed. For simplicity, we
renumber the tasks so that task T} is the i*" task executed in the linearization
of the DAG.

Theorem 3. Given a DAG, and a schedule for this DAG, it is possible to
compute the expected execution time in polynomial time.

Proof. Let X; be the random variable that corresponds to the execution time
between the end of the first successful execution of task T;_; and the end of the
first successful execution of task T;. The expected execution time of the DAG
is E[Y-"_, X;]. Let F(X;) be the event “There was a fault during X;.” Let Z}
be the event “There was a fault during X and no fault during Xy1; to X;_1,
given that T;_; was successfully executed.” We have:

i1
Zi= () FEXH)()FXk) (4)
j=k+1
(for the limit cases, Z! ;| = F(X;_1) and Z} = ﬂ;;ll F(X;)). The set of events

Z,i for 0 < k < i — 1 partitions the set of possibilities for X;. Hence we can

write
i—1

E[X)]| =) P(Z)E[Xi| Z})- (5)
k=0

We now need to show how to compute the P(Z}) and E[X;|Z}].

Definition 1 (T}%). Given a schedule, let j < k < i, then we say that Tj € T,
if for all k <1<, T; ¢ T, and

(i) either T; is a direct predecessor of T;,

RR n° 8609

Scheduling computational workflows on failure-prone platforms 14

(ii) or there exists T} € Tjk such that T; not checkpointed and T is a direct
predecessor of Tj.

Less formally, the set Tjk corresponds to all the predecessors of T; (in the
DAG), whose output is lost if the event Z,i occurs and needed for the computa-
tion of T;. For instance, it is not lost if it has been recomputed for another task
executed after the last fault (that occurred during the computation of Tj) but
still before T;. Furthermore, it is not needed if for all paths between 7} and 77,
there is a task whose output is not lost. If T € Tj’k was not checkpointed, then
we need to execute its work w; again, otherwise we need to execute the recovery
rj. Computing all sets Tiik is the key to evaluating the schedule makespan.

Let W} be the sum of the w; such that (i) 7} is a non-checkpointed task
and (ii) T € T, Similarly, let Ri be the sum of the r; such that (i) Tj
is a checkpointed task and (ii) T € Tjk. We now show the following three
properties:

A VEO<k<i-1,

P(Z}) = e Escin (Wit Rlrust8is) p(z+1)

where d; is 0 if T} is not checkpointed, 1 otherwise.
B.Vi>1,P(Z_) =1- Y1 P(Z)).
C. Vk,0<Ek <,
E[X;|Z.|=E[t(W} + Rj,+w;; §;c;; Wi+ Ri— (Wi+RL))],
where 0; is 0 if T; is not checkpointed, 1 otherwise.

[A] Let us compute P(Z}) for 0 < k < i—1. Let Y}’ be the event “There
is no fault during Xy, to X;_; given that there was a fault during X;.” We
have:

Vi ={ ﬂ F(X;)|F(Xg)}-
j=k+1
Then by definition, P(Z;) = P(Y}) - P(F(X})|T;—1 is successfully executed).
Then we derive P(Y{) = ¢ Zimkan (WiHRLAwiH35¢) Thig is because we need to
execute Z; Kl (W,g + Ri +w; + 5jcj> consecutive units of work without fault

by definition of the W} and R}. Also, P(F(Xy)|T;—1 is successfully executed) =
P(F(X%)), indeed, the probability of a fault during X is independent of the
execution of T;_; since i —1 > k. Finally, one can see that P(F(X},)) = P(Z; ™)
by definition of Z}*.

[B] Let us compute P(Z!_,) fori > 1. We have seen that the Zk for0 <k <
i — 1 partition the set of possibilities. Hence, by definition, l ! o P(Z) =
We derive the value of P(Z!_,) from the i — 2 other values.

RR n° 8609

Scheduling computational workflows on failure-prone platforms 15

[C] Let us compute E[X;|Z}] for 0 < k < i. To compute E[X;|Z{], it suffices
to see that we need to execute a work of W} + R + w; with a checkpoint §;c;.
Then, if there is a fault, the recovery cost is W} + R! for a work of w;, which
is identical to having a recovery cost of W/ + R! — (W} + R}) for a work of
W} + Ri + w;. Hence, using the notation of Equation (1), we obtain that:

E[X;|Z]] = E[t (W} + R, + wi; Sici; W) + Rl — (Wi + R},))]

To conclude the proof, we need to show that we can compute the W} and
i
i, values.

Lemma 3. FINDWIKRIK (Algorithm 1) computes W,z and R§€ in polynomial
time for all i > k.

Proof. We consider the following invariant H;, for FINDWIKRIK:
(Hi): At the end of the iteration i of the “for” loop (line 4), for all (j,i’)
such that j < k <4 <i+1, then
o if Tj € TS, then
— taby.(i").(j) € {1,2} (1 if T; is not checkpointed, 2 otherwise),
— fori"” >4 tab.(i").(j) =0 (0 means T; ¢ Tf,,k because T; € Tf,k),
e clse,
— if there exists | < i', and Tj € le, then taby.(1").(5) =0,
— else tabg.(1).(j) = —1.
For all (§,1) such that | > i > j, and Ty € T, then taby.(1).(j) = —1.
To establish the invariant, we first introduce the following definition:

Definition 2 (path of Tj in T}*). Let Tj € T*, then Ty = Ty, Ty, - - -, Ty, = T
is a path of Tj in T* of length I, if

(i) I=1, or

(ii) T,, € T}*, T,, is not checkpointed and T},
in TZ-Uc of length [— 1.

15+ Iy, =Tj is a path of T,
We define the distance l](-i’k) of Tj in TZ-UC as the minimal length of a path of T}
in T

Here are some preliminary remarks before starting the proof:

e Once a value of taby, is set, it is never modified by TRAVERSE (the switch
on line 19).

o If taby.(i').(j) € {1,2}, then for all i > ¥/, taby.(i").(j) = 0. Indeed,
taby.(i').(j) is only set to 1 or 2 in the switch line 19, and when it is the
first step of this switch (line 25) is to set tabg.(i").(j) to 0 for all i > ¢'.

e The only calls TRAVERSE (j,1, k,taby) are for j = i or T} € Tfk and
T; not checkpointed. Hence for Tj; €PRED (7)), either T) € Tiik or
A < i, Ty € Tlik. This shows that for all (j,{) such that { > i > j, and

RR n° 8609

Scheduling computational workflows on failure-prone platforms 16

T, € Tlu“7 then tabg.(1).(j) = —1 since we will never visit such a node
during iteration ¢ of the “for” loop.

We are now ready to prove the invariant by induction. Let us show that H}C
holds for 7 > k.

Let us show Hf. At the beginning of the “for” iteration (line 4), for i = k,
taby.(k).(j) = —1. We show that H} holds for all tasks in TkuC (the case for tasks
not in T}* is trivial), and do this by induction on their distance (as defined in
Definition 2) in T;".

First, we verify that for all predecessors T of T} whose distance is 1 in
Ték, the call TRAVERSE (k, k, k,taby) checks whether T € Ték (answer, yes)
and has not been studied (the switch on line 19). If it is the case, then it
assigns 1 or 2 to taby.(k).(j), and then calls TRAVERSE (7, k, k, taby) if and only
if T} is not checkpointed. Then there is a call TRAVERSE (j, k, k, taby,) for all
not-checkpointed elements of T,i’k whose distance is 1 in T,jk.

Let us now assume H ,’j holds for all T; € Tkl ¥ such that Zy’k) =[. Let us show
the result for all T}, € TkU€ such that l;l,’k) =1+1. Let T}/, T, , ..., T, =T} path
of T in Tkl Fof length 4 1. Then when T},, was studied, by hypothesis because
it is not checkpointed, there was a call TRAVERSE (p1, k, k, taby). Because T}/
is a direct predecessor of T}, , then either its value in tab; was already set to 1
or 2 through another path or it was set to -1 and this call has set it up to 1 or
2. By induction we obtain H ,’j

Assuming Vk < i <1, H};, let us show Hj}. First note that H} " gives us (i)
if there exists [< i, and T; € T}*, then taby.(i').(j) = 0, and (i) Vj,T; € T},
then at the beginning of iteration i, taby.(7).(j) = —1. Furthermore, with the
preliminary remark, to show H},, we simply need to show that for all j < k,

o if Tj € T, then taby.(i).(j) € {1,2} (1 if T} is not checkpointed, 2

(2
otherwise),

o clse, if for all | < i, Tj ¢ T;"", then taby.(i).(j) = —1.
The proof can be done by induction and is similar to H ,’j The first call TRA-
VERSE (4,1, k,taby) makes sure that this is true for all predecessors T; of T;
whose distance is 1 in Tiuc (the only reason why a predecessor T of T; would
not be in TZ-UC isif 3l < 4,7} € Tlik’ and in that case by induction hypothesis,
taby.(i).(j) = 0). Then there is a call to TRAVERSE only for the predecessor
tasks T} € 7T, jk that are not checkpointed.

Finally, H gives the correctness of Algorithm 1, whose complexity is O(n?).
O

Altogether, Algorithm 1 is called for each task, and the complexity of the
whole evaluation method is O(n?). O

Because we can compute the expected makespan of a schedule, a schedule
of a DAG is a sufficient certificate to verify whether the expected makespan is
below a certain threshold. Hence we have derived the following result:

RR n° 8609

Scheduling computational workflows on failure-prone platforms 17

Algorithm 1 FINDWIKRIK

1: procedure FINDWIKRIK(k)

2 tabi: m X n array initialized with -1
3 Wy, Ry: n arrays initialized with 0
4 fori=k...ndo

5: taby, =TRAVERSE (4,1, k, taby)
6 forj=1...k—1do

7 switch taby.(i).(j) do
8

9

case 1
Wi, (i) « Wi.(i) + w;
10: case 2
11: Ry.(2) < Ry.(3) + 1
12: end for

13: end for

14: Return W, R,

15: end procedure

16:

17: procedure TRAVERSE(!, i, k, taby)
18: for T; € PRED(T;) do

19: switch taby.(7).(j) do

20: case (>3 <, T € Tlfk
21: Do nothing

22: case 1,2 >T; € Tfk, already studied
23: Do nothing

24: case -1 > Tj € T, not yet studied
25: forr=i+1...ndo

26: taby.(r).(j) 0 > T eTH =T, ¢ TH"
27: end for

28: if j < k then

29: if T ckpted then

30: tabg.(i).(5) + 2

31: else

32: tabg.(1).(5) < 1

33: taby =TRAVERSE (7,1, k, taby)

34: end if

35: else

36: taby.(1).(4) < 0

37 end if

38: end for
39: Return tab
40: end procedure

RR n° 8609

Scheduling computational workflows on failure-prone platforms 18

Corollary 3. DAG-CHKPTSCHED for general DAGSs is in NP (and then NP-
complete from Theorem 2).

5 Heuristics for general DAGs

In this section, we develop polynomial-time heuristics in the case of general
DAGs. A heuristic that computes a schedule for a given instance of DAG-
CHKPTSCHED must answer two questions: (i) how should the DAG be lin-
earized? and (ii) which tasks should be checkpointed? To answer the first
question, we consider three possible linearization strategies: Depth First (DF),
Breadth First (BF), and Random First (RF). For DF and BF, we prioritize
the tasks by decreasing outweight (i.e., the sum of the weights of the task’s
successors). The rationale is that tasks that have “heavy” subtrees should be
executed first.

To answer the second question, we propose four checkpointing strategies.
The first and second strategies are baseline comparators, and correspond to
either never checkpointing (CKPTNVR) or always checkpointing (CKPTALWS).
For both these strategies, we only consider the DF linearization. A DF lin-
earization makes sense when no checkpoints are taken because one should make
progress toward sink tasks aggressively rather than pursuing multiple sink tasks
simultaneously (which is risky in the presence of failures).

The third and fourth strategies fix the total number of checkpoints taken
throughout the application execution, say N, and checkpoint N tasks based
on some criteria. Then they do an exhaustive search for the N value, N =
1,...,n — 1 (recall that n is the number of tasks), that achieves the lowest
expected makespan computed in polynomial time as explained in Section 4.2.

In the third strategy, tasks are sorted by decreasing w; (checkpoint first the
tasks whose computations are the longest), by increasing ¢; (checkpoint first the
tasks whose checkpointing overheads are the shortest), or by decreasing d;, the
sum of the weights of the successors (checkpoint first the tasks whose successors
are more likely to fail). The top IV tasks taken in these orders are checkpointed.
We name the three versions of this strategy CkpTW, CKPTC, CKPTD.

The fourth strategy, CKPTPER, relies on the idea of periodic checkpoint-
ing [2, 3]. Given a linearization of the DAG, consider a failure-free execution.
If W is the sum of the w; values over all tasks, CKPTPER checkpoints the task
that completes the earliest after time z x W/N for x = 1,..., N — 1. While
periodic checkpointing is a typical approach for data-parallel computation, it
does not account for the structure of the DAG.

Heuristic names are concatenations of the name of the linearization strategy
and of the checkpointing strategy (e.g., RF-CkpTC). Combining the three lin-
earization strategies (DF, BF, RF) and the checkpointing strategies, we have
a total of 14 heuristics. Unfortunately, there are no heuristics from the lit-
erature that we could compare to. This is because no method to evaluate the
expected makespan of a schedule was available before this work, thus precluding
the design (and the straightforward evaluation) of reasonable heuristics.

RR n° 8609

Scheduling computational workflows on failure-prone platforms 19

6 Experimental evaluation

In this section, we present experimental results that quantify the performance
of the heuristics in Section 5. The source-code (implemented in OCaml) and all
input and output data are publicly available at [22].

6.1 Experimental methodology

To evaluate our heuristics with representative DAGs, we use the Pegasus Work-
flow Generator (PWG) [9, 23]. PWG uses the information gathered from actual
executions of scientific workflows as well as domain-specific knowledge of these
workflows to generate representative and realistic synthetic workflows. We con-
sider 4 different workflows generated by PWG (information on the corresponding
scientific applications is available in [23, 24]):

e MONTAGE: The NASA /TPAC Montage application stitches together mul-
tiple input images to create custom mosaics of the sky. The average weight
of a MONTAGE task is 10s.

e L1co: LIGO’s Inspiral Analysis workflow is used to generate and ana-
lyze gravitational waveforms from data collected during the coalescing of
compact binary systems. The average weight of a L1GO task is 220s.

e CYBERSHAKE: The CyberShake workflow is used by the Southern Califor-
nia Earthquake Center to characterize regional earthquake hazards. The
average weight of a CYBERSHAKE task is 25s.

e GENOME: The epigenomics workflow created by the USC Epigenome Cen-
ter and the Pegasus team automates various operations in genome se-
quence processing. The average weight of a GENOME task depends on the
number of tasks and is greater than 1000s.

In all experiments, ¢; = r; (checkpoint and recovery costs are identical for

a task) and D = 0 (downtime is zero seconds). We present results for the
different workflows in the particular case where ¢; = w; /10, and for a MTBF of
103s (except for GENOME where the average weight of each task is significantly
longer than for other graphs, in which case we consider a MTBF of 10%s). These
results are very similar to the results that we obtained for MTBF values between
10% and 107 seconds, and for ¢; = w;/100 or ¢; = ¢ (constant for all 7). See
Appendix A for all results. We vary the number of tasks in each workflow
from 50 to 700. All figures in the next section show the number of tasks on
the horizontal axis and the ratio of the expected execution time (T') over the
execution time of a failure-free, checkpoint-free execution (Tin¢) on the vertical
axis (lower values are better). The expected execution time T is computed using
the method described in Section 4.2.

6.2 Results

We find that our results strongly depend on the structure of the DAG, meaning
that trends and relative performance of heuristics vary between each workflow
type. Consequently, we do not show results aggregated over all workflows. The

RR n° 8609

Scheduling computational workflows on failure-prone platforms 20

goal of our experiments is to determine for each workflow (i) which DAG lin-
earization strategy is best and (ii) which checkpointing strategy is best, hoping
to identify strategies that are good across different workflows.

Linearization strategies — Figure 2 shows results for the CYBERSHAKE, LIGO,
and GENOME workflows for two checkpointing strategies, CKPTW and CkpTC,
and for all three linearization strategies. CKPTW and CKPTC are the best
checkpointing strategies in our results (see the discussion of the results in Fig-
ure 3 hereafter). Figure 2 does not show results for the MONTAGE workflow.
For this workload, the choice of the linearization strategy has almost no impact
on the results (at most a 1% relative difference). Overall, the DF linearization
is almost always the best. This makes sense as this strategy stipulates that if
some work can be done that depends on the most recently completed work then
it should be done. Otherwise, by following a different branch of the workflow,
one risks losing that recent work and having to do it again (or recover it). The
only case where DF is not the best linearization approach is for the MONTAGE
graph and the CKPTPER heuristic (see Figure 3a). We have no explanation but
since CKPTPER is the worst checkpointing strategy for that workflow, this re-
sult is not particularly relevant. It is interesting to see in Figure 2b that, for the
Lico workflow, RF performs better than BF. This is because RF sometimes
corresponds to a DF-like strategy.

Checkpointing strategies — Figure 3 shows results for all four workflows. For each
checkpointing strategy, we only show results for the linearization strategy that
leads to the best results (the line symbols indicate which linearization strategy
is used). First, we note that our checkpointing heuristics always perform bet-
ter than the two baseline comparators, CKPTNVR and CKPTALWS. Second,
an interesting (but expected) result is that CKPTPER does not behave well,
and sometimes even worse than CKPTNVR or CKPTALWS. CKPTPER is one
of the most used heuristics for divisible applications. As such, it does not ac-
count for the structure of the DAG. This causes it to make poor checkpointing
choices. For instance, consider the example workload in Figure 1 with the lin-
earization Ty, T3, T1, Ts, etc. It makes sense to checkpoint T3 before executing
Ty, which is a source task. But CKPTPER may checkpoint 73 instead because
wo + w3 + wy happens to correspond to the chosen checkpointing period. The
main result from Figure 3 is that two checkpointing strategies outperform the
other strategies: CKPTW (for MONTAGE, L1GO and GENOME) and CkpTC (for
CYBERSHAKE). These two heuristics behave very differently because we have
¢; = 0.1w;. CKPTW checkpoints the tasks by decreasing weight (hence by de-
creasing checkpointing time since it is proportional to the weight of the tasks)
while CKPTC checkpoints the tasks by increasing checkpointing time (hence
increasing weight). The good performance of both heuristics in different sce-
narios can be explained intuitively. After finishing a long/large task it is useful
to checkpoint it as quickly as possible in case a failure occurs soon (which is
what CKPTW does). Conversely, checkpointing a short/small task (which may
be the successor of a long task) is also useful because its checkpointing time is
low (which is what CKPTC does).

RR n° 8609

Scheduling computational workflows on failure-prone platforms 21

Constant checkpoint overhead — To better assess the impact of checkpointing
costs, we discuss results with a constant checkpoint cost, independent of task
weights. First, when CKPTW performs better with a proportional checkpoint,
it also perform better in this case. Indeed, the ratio of computations that
risk to be lost over checkpointing time will be even more beneficial to large
tasks. However, for workflows where CKPTC performs better, the question is
interesting. Figure 4 shows results for CYBERSHAKE that allow a comparison of
CkpTW and CkPTC when the checkpointing cost is constant (using ¢; = 10).
This plot can be compared to Figure 2a where the checkpoint is proportional
to the computation. We can see that when the checkpointing cost is constant,
CkPTW tends to behave as well as CKPTC on CYBERSHAKE workflows.

Summary — We have compared our heuristics in different experimental scenar-
ios. In general, DF-CKPTW leads to the best results, which in practice would
translate to shorter makespans. DF-CKPTC performs well in some cases. These
performance differences depend on the structure of the DAG, and can likely only
be discovered empirically as done in this section. Overall our best heuristics,
which rely on the computation of the expected makespan given in Section 4.2,
lead to significantly better results than the baseline CKPTALWS and CKPTNVR
approaches. Taking into account the structure of the DAG is important, which
is highlighted by the poor results of the CKPTPER heuristic.

7 Conclusion

In this work, we have studied the problem of scheduling computational work-
flows on a failure-prone platform. We have used a framework where applica-
tions are scheduled on the full platform where processors are subject to i.i.d.
exponentially distributed failures. Checkpointing-rollback-recovery is used to
tolerate failures. The main contribution over previous work [13, 19] is that we
consider general Directed Acyclic Graphs instead of linear chains. Our theo-
retical results include polynomial-time algorithms for fork DAGs and for some
join DAGs (when the checkpoint and recovery costs are constant) and the in-
tractability of the problem for join DAGs. Our main theoretical result is a
polynomial-time algorithm to evaluate the expected makespan of a schedule for
general DAGs. This is a key result as it makes it possible to design heuristics
for general DAGs, i.e., heuristics that can construct a schedule with a known
objective. Without this result, the only way to attempt to find a good schedule
would be to run numerous and likely prohibitively time-consuming stochastic
experiments with a fault generator (either in simulation or on a real platform).
We have proposed several heuristics and have evaluated them for four represen-
tative scientific workflow configurations. Overall, we find that DAGs should be
traversed depth-first (DF) and that checkpointing should be done by prioritiz-
ing tasks based on weight (CKPTW) or checkpointing cost (CKPTC). The two
resulting heuristics, DF-CkPTW and DF-CkpTC perform differently on dif-
ferent workflows depending of their DAG structure. We found that a periodic

RR n° 8609

Scheduling computational workflows on failure-prone platforms 22

checkpointing approach, although widely used for divisible applications, is not
effective, precisely because it does not account for the structure of the DAG.

A future direction for this work is to consider non-blocking checkpointing
operations, i.e., a processor can compute a task, perhaps at a reduced speed,
while checkpointing a previously executed task. Overlapping of computation
and checkpointing can improve performance, but changes the problem. In par-
ticular, it would be interesting to see how our theoretical results are impacted
when considering non-blocking checkpointing. A broader future direction would
be to remove the assumption that the DAG is linearized, i.e., that each task
executes on the entire platform. The scheduling problem then becomes much
more complex since one must decide how many processors are allocated to each
task, and possibly account for data redistribution costs.

Acknowledgments This work was supported in part by the French Research
Agency (ANR) through the Rescue project. Yves Robert is with Institut Uni-
versitaire de France.

References

[1] J. Dongarra et al., “The International Exascale Software Project,” Int. J.
High Performance Computing App., vol. 23, no. 4, pp. 309-322, 2009.

[2] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACM, vol. 17, no. 9, pp. 530-531, 1974.

[3] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” FGCS, vol. 22, no. 3, pp. 303-312, 2006.

[4] E. Gelenbe and D. Derochette, “Performance of rollback recovery systems
under intermittent failures,” Communications of the ACM, vol. 21, no. 6,
pp. 493-499, 1978.

[5] A. Bouteiller, P. Lemarinier, K. Krawezik, and F. Capello, “Coordinated
checkpoint versus message log for fault tolerant MPL,” in Cluster Comput-
ing. IEEE Computer Society Press, 2003, pp. 242-250.

[6] K. M. Chandy and L. Lamport, “Distributed snapshots : Determining
global states of distributed systems,” in Transactions on Computer Sys-
tems, vol. 3(1). ACM, February 1985, pp. 63-75.

[7] E.N.M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Computing
Survey, vol. 34, pp. 375-408, 2002.

[8] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive incremen-
tal checkpointing for massively parallel systems,” in Proc. ICS ’04. ACM,
2004.

RR n° 8609

Scheduling computational workflows on failure-prone platforms 23

[9]

S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi,
“Characterization of scientific workflows,” in Workflows in Support of
Large-Scale Science (WORKS 2008). 1EEE, 2008, pp. 1-10.

S. Chakrabarti, J. Demmel, and K. Yelick, “Modeling the benefits of mixed
data and task parallelism,” in Proc. SPAA’95. ACM, 1995.

P. Dutot, L. Eyraud, G. Mounié, and D. Trystram, “Scheduling on large
scale distributed platforms: from models to implementations,” Int. J.
Found. Comput. Sci., vol. 16, no. 2, pp. 217-237, 2005.

F. Suter, “Scheduling delta-critical tasks in mixed-parallel applications on
a national grid,” in Int. Conf. Grid Computing (GRID 2007). IEEE, 2007.

S. Toueg and 0. Babaoglu, “On the optimum checkpoint selection prob-
lem,” SIAM J. Comput., vol. 13, no. 3, pp. 630-649, 1984.

M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent, “A flexible
checkpoint /restart model in distributed systems,” in PPAM, vol. LNCS
6067, 2010.

Y. Ling, J. Mi, and X. Lin, “A variational calculus approach to optimal
checkpoint placement,” IEEE Trans. Computers, pp. 699-708, 2001.

T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Distribution-free checkpoint

placement algorithms based on min-max principle,” IEEE TDSC, pp. 130—
140, 2006.

M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien, “Check-
pointing strategies for parallel jobs,” in Proc. SC’2011. ACM, 2011.

E. Gelenbe and M. Hernandez, “Optimum checkpoints with age dependent
failures,” Acta Informatica, vol. 27, no. 6, pp. 519-531, 1990.

M.-S. Bouguerra, D. Trystram, and F. Wagner, “Complexity Analysis of
Checkpoint Scheduling with Variable Costs,” IEEE Trans. Computers,
vol. 62, no. 6, pp. 1269-1275, 2013.

Y. Robert, F. Vivien, and D. Zaidouni, “On the complexity of schedul-
ing checkpoints for computational workflows,” in Proc. of the Dependable
Systems and Networks Workshop, 2012, pp. 1-6.

M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

G. Aupy, “Source code and data.” https://github.com/Gaupy/
linear-workflows, 2014.

Pegasus, “Pegasus workflow generator.” https://confluence.pegasus.isi.
edu/display/pegasus/WorkflowGenerator, 2014.

G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682-692, 2013.

RR n° 8609

Scheduling computational workflows on failure-prone platforms

24

A Additional plots

RR n° 8609

Scheduling computational workflows on failure-prone platforms

25

—eo— BF —&— DF —a— RF

—— CKPTW =—— CkPTC

112 - .
o 100 20 300 100 00 o0 0
number of tasks
(a) CYBERSHAKE: A = 0.001, ¢; = 0.1w;.
T | T
"
Sttt
Las
o —h
142 — -
. .
Las
A
e S P

B e 200 300 a0 500 000 0

number of tasks

(b) Lico: A =0.001, ¢; = 0.1w;.

\ . \ \ . \ .
100 200 300 400 500 a0 700
number of tasks

(¢) GENOME: A = 0.0001, ¢; = 0.1w;.

Figure 2: Impact of the linearization strategy.

RR n°® 8609

Scheduling computational workflows on failure-prone platforms

26

—e— BF —— DF

—a— RF

—— CKPTNVR=—— CKPTALWS=—— CKPTPER =—— CKPTW-=—— CKPTC =—— CKPTD

T / Tt

15

' |
400 00

number of tasks

(a) MONTAGE: A = 0.001, ¢; = 0.1w;.

300

T/ Tt

14

|
700

400

number of tasks

(c) CYBERSHAKE: A = 0.001, ¢; = 0.1w;.

300

Figure 3: Impact of the checkpointing strategy.
we plot the best linearization strategy.

RR n°® 8609

T/ Tt

300 00

number of tasks

(b) Lico: A =0.001, ¢; = 0.1w;.

100 200

T/ Tt

23

2.00

161

300 400 600

number of tasks

(d) GENOME: A = 0.0001, ¢; = 0.1w;.

200

100

For each checkpointing strategy,

Scheduling computational workflows on failure-prone platforms

27

—e— BF —4— DF —a— RF

— CkpTW —— CkprTC
T/ Tt

e 100 200 300 100 00 o0 0

number of tasks
(a) CYBERSHAKE: A = 0.001, Vi, ¢; = 10s.

T/ Tt

s
- e . .

14z = -« — 90— —e— ¢
a4

I I I ' ' I |
100 200 300 400 500 600 700

number of tasks

(b) CYBERSHAKE: A = 0.001, Vi, ¢; = bs.

T/ Tt -

106

104 \K\:; ;‘/f”fﬁf—w,,,k — a

101 + : + + + ' '
100 200 300 00 500 600 700

number of tasks

(c) CYBERSHAKE: A = 0.001, ¢; = 0.01w;.

Figure 4: Impact of the linearization strategy for a constant checkpoint.

RR n°® 8609

Scheduling computational workflows on failure-prone platforms

28

—e— BF —4— DF

—a— RF

—— CKPTNVR=—— CKPTALWS=—— CKPTPER =—— CKPTW-=—— CKPTC =—— CKPTD

T | Tt

' |
400 700

300

number of tasks

(a) MONTAGE: A = 0.001, ¢; = 0.01w;.

T/ Tt

14

-
-

- - # +
300 400 600 700

number of tasks

(c) CYBERSHAKE: A = 0.001, ¢; = 0.01w;.

* ‘
100 200

Figure 5: Impact of the checkpointing strategy.
we plot the best linearization strategy.

RR n°® 8609

T/ Tt
Las
Las —
L4 —
136
a2
— — i a— - —
A, N
. 100 20 300 100 500 o0 0
number of tasks
(b) Lico: A = 0.001, ¢; = 0.01w;.
T/ Tt

216

16 ‘ n n
200 300 400

100

number of tasks

(d) GENOME: A = 0.0001, ¢; = 0.01w;.

For each checkpointing strategy,

Scheduling computational workflows on failure-prone platforms 29

—e— BF —4— DF —a— RF

—— CKPTNVR=—— CKPTALWS=—— CKPTPER =—— CKPTW-=—— CKPTC =—— CKPTD

T | Tt T | T

15 15

' N J—
- - — - L)
k\\\ﬁ—ﬁiﬂfiﬂffii*fff——i*’
o 100 200 300 w0 500 a0 70 " 100 20 300 100 500 o0 0
number of tasks number of tasks
(a) MONTAGE: A = 0.001, ¢; = 5s. (b) Lico: A =0.001, ¢; = 5s.
T/ Tt T/ T
27
206
L6
L5
L
o 100 200 300 w00 500 a0 700 v 100 200 a0 a0 500 o0 700
number of tasks number of tasks
(c) CYBERSHAKE: A = 0.001, ¢; = 5s. (d) GENOME: A = 0.0001, ¢; = 5s.

Figure 6: Impact of the checkpointing strategy. For each checkpointing strategy,
we plot the best linearization strategy.

RR n°® 8609

Scheduling computational workflows on failure-prone platforms

30

—e— BF —a— DF

—— CKPTNVR=—— CKPTALWS—— CKPTPER ——

52107 66107 8107t 93-107%

number of tasks

11074 25107 38107

(a) MONTAGE: 200 nodes, ¢; = 0.1w;.

52.107¢ 66107 5107t 03.107%

number of tasks

107t 25107 38.107¢

(c) CYBERSHAKE: 200 nodes, ¢; = 0.1w;.

—a— RF

CkpTW=—— CkpTC =—— CKPTD

931074

52107 66107 ERUE

number of tasks

381074

(b) Lico: 200 nodes, ¢; = 0.1w;.

L4107 15107 23107 27107

number of tasks

(d) GENOME: 200 nodes, ¢; = 0.1w;.

100 5.107° 910"

Figure 7: Impact of the checkpointing strategy. For each checkpointing strategy,

we plot the best linearization strategy.

RR n°® 8609

V4

: in[orma!ics,mutheman’:s

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

