An ℓ 1 -oracle inequality for the Lasso in finite mixture of multivariate Gaussian regression models.

Emilie Devijver 1, 2
1 SELECT - Model selection in statistical learning
Inria Saclay - Ile de France, LMO - Laboratoire de Mathématiques d'Orsay, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We consider a multivariate finite mixture of Gaussian regression models for high-dimensional data, where the number of covariates and the size of the response may be much larger than the sample size. We provide an ℓ 1 -oracle inequality satisfied by the Lasso estimator according to the Kullback-Leibler loss. This result is an extension of the ℓ 1 -oracle inequality established by Meynet in the multivariate case. We focus on the Lasso for its ℓ 1 -regularization properties rather than for the variable selection procedure, as it was done in Städler et al.
Type de document :
Article dans une revue
ESAIM: Probability and Statistics, EDP Sciences, 2015
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01075338
Contributeur : Emilie Devijver <>
Soumis le : jeudi 14 janvier 2016 - 13:24:10
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : samedi 16 avril 2016 - 10:42:31

Fichiers

L1OracleInequalityArxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01075338, version 2

Citation

Emilie Devijver. An ℓ 1 -oracle inequality for the Lasso in finite mixture of multivariate Gaussian regression models.. ESAIM: Probability and Statistics, EDP Sciences, 2015. 〈hal-01075338v2〉

Partager

Métriques

Consultations de la notice

143

Téléchargements de fichiers

124