P. Bonatti, A. Hogan, A. Polleres, and L. Sauro, Robust and scalable Linked Data reasoning incorporating provenance and trust annotations, Web Semantics: Science, Services and Agents on the World Wide Web, pp.165-201, 2011.
DOI : 10.1016/j.websem.2011.06.003

A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt, FedX: Optimization Techniques for Federated Query Processing on Linked Data, Proc. of the 10th International Semantic Web Conference, 2011.
DOI : 10.1007/978-3-642-21064-8_39

J. Huang, D. J. Abadi, and K. Ren, Scalable SPARQL querying of large RDF graphs, Proceedings of the VLDB Endowment, pp.1123-1134, 2011.

O. Hartig and R. Heese, The SPARQL Query Graph Model for Query Optimization, Proceedings of the 4th European Conference on The Semantic Web: Research and Applications, ser. ESWC '07, pp.564-578, 2007.
DOI : 10.1007/978-3-540-72667-8_40

P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and P. Boncz, Heuristics-based query optimisation for SPARQL, Proceedings of the 15th International Conference on Extending Database Technology, EDBT '12, pp.324-335, 2012.
DOI : 10.1145/2247596.2247635

A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox et al., Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning, 2009 IEEE 25th International Conference on Data Engineering, pp.592-603, 2009.
DOI : 10.1109/ICDE.2009.130

C. Gupta, A. Mehta, and U. Dayal, PQR: Predicting Query Execution Times for Autonomous Workload Management, 2008 International Conference on Autonomic Computing, pp.13-22, 2008.
DOI : 10.1109/ICAC.2008.12

M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and S. Zdonik, Learning-based Query Performance Modeling and Prediction, 2012 IEEE 28th International Conference on Data Engineering, pp.390-401, 2012.
DOI : 10.1109/ICDE.2012.64

H. Bunke and B. Messmer, Similarity measures for structured representations, Lecture Notes in Computer Science, vol.837, pp.106-118, 1994.
DOI : 10.1007/3-540-58330-0_80

K. Riesen and H. Bunke, Approximate graph edit distance computation by means of bipartite graph matching, Image and Vision Computing, vol.27, issue.7, pp.950-959, 2009.
DOI : 10.1016/j.imavis.2008.04.004

K. Riesen, S. Emmenegger, and H. Bunke, A novel software toolkit for graph edit distance computation, " in Graph-Based Representations in Pattern Recognition, pp.142-151, 2013.

L. Kaufman and P. Rousseeuw, Clustering by means of medoids, Statistical Data Analysis based on the L1 Norm, Y. Dodge, p.405416, 1987.

M. Morsey, J. Lehmann, S. Auer, and A. Ngomo, DBpedia SPARQL Benchmark ??? Performance Assessment with Real Queries on Real Data, The Semantic Web ISWC 2011, pp.454-469, 2011.
DOI : 10.1016/j.websem.2005.06.005

A. Owens, A. Seaborne, and N. Gibbins, Clustered TDB: A clustered triple store for Jena, 2008.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, 2009.
DOI : 10.1145/1656274.1656278

D. Aha, D. Kibler, and M. Albert, Instance-based learning algorithms, Machine Learning, pp.37-66, 1991.
DOI : 10.1007/BF00153759

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician, vol.46, issue.3, pp.175-185, 1992.

J. H. Friedman, J. L. Bentley, and R. A. , An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Software, vol.3, issue.3, pp.209-226, 1977.
DOI : 10.1145/355744.355745

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, pp.1-27, 2011.
DOI : 10.1145/1961189.1961199

S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. Murthy, Improvements to the SMO algorithm for SVM regression, IEEE Transactions on Neural Networks, vol.11, issue.5, pp.1188-1193, 2000.
DOI : 10.1109/72.870050

M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds, SPARQL basic graph pattern optimization using selectivity estimation, Proceeding of the 17th international conference on World Wide Web , WWW '08, pp.595-604, 2008.
DOI : 10.1145/1367497.1367578

F. Frasincar, G. Houben, R. Vdovjak, and P. Barna, RAL: An Algebra for Querying RDF, World Wide Web, vol.7, issue.1, pp.83-109, 2004.
DOI : 10.1023/B:WWWJ.0000015866.43076.06

M. Arias, J. D. Fernndez, M. A. Martnez-prieto, and P. De-la-fuente, An empirical study of real-world SPARQL queries, 1st International Workshop on Usage Analysis and the Web of Data (USEWOD2011), in Conjunction with WWW 2011, 2011.