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On noise reduction in strain maps obtained with the grid method by
averaging images a�ected by vibrations

Fr�ed�eric Sur � and Michel Gr �ediac y

Abstract

Any image-based contactless measurement system has a limited resolution because of sensor noise.
If the sensor is rigorously static with respect to the imaged object, apossibility is to reduce noise
by averaging images acquired at di�erent times. This paper discusses images of a pseudo-periodic
grid used in experimental solid mechanics to give estimations of in-plane displacement and strain
components of a deformed 
at specimen. Because of the magni�cation factor which is employed, the
grid images are often a�ected by residual vibrations, thereby invalidating the assumption that the
sensor is static. The averaged grid image is thus a biased estimator of theunknown noise-free image.
In spite of this, we prove that the retrieved displacement and strain components still bene�t from
noise reduction by time-averaging. A theoretical model is discussed, and experiments on real and
synthetic data sets are provided.
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1 Introduction

Full-�eld measurement techniques are now wide spread in the experimental mechanics community, but
characterizing their actual metrological performance still remains an open question, as illustrated by
numerous papers published recently on this topic [3, 5, 6, 10, 15, 29]. In particular, it is important to
understand all phenomena which cause the �nal displacement and strain maps to be noisy or a�ected by
a bias in order to tackle these causes with suitable tools, and �nally obtain more reliable maps. In this
context, this paper is devoted to the e�ect of vibrations on time averaging which is often used to reduce
noise in images before processing them to obtain displacement and strain maps. It is shown that, under
vibrations, an averaged image is actually a biased estimator of the noise-free image. Such a property
makes it necessary, in standard image processing applications, to accurately estimate the translation
a�ecting each image in order to properly register the images before stacking. However, the contribution
of this paper is to demonstrate that, in the special case of the grid method, the displacement and
strain maps estimated from the averaged grid are still improved by this averaging procedure and the
registration step is not needed.

The grid method is one of the full-�eld techniques available for measuring in-plane displacement
and strain maps of a specimen subjected to a load, and consequently locally slightly deformed [25]. It
�rst consists in depositing a regular grid on the surface of the 
at specimen to be tested and then in
taking high-resolution images of the grid before and after deformation, seeFigure 1 (left). Since the
experimental setup makes it possible to precisely align the imaged grid with the pixel grid, a grid image
is modeled as a 2-D pseudo-periodic function [4, 11, 23]:

s(x; y) =
A
2

�
2 + 
` (2�fx + � 1(x; y)) + 
` (2�fy + � 2(x; y))

�
(1)

where A > 0 is the average �eld illumination, 
 2 [0; 1] is the contrast of the oscillatory pattern, the
line pro�le ` is a 2� -periodic real function with peak-to-peak amplitude equal to 1 and average value 0,
f is the frequency of the carrier (e.g.,f = 1=5 pixel� 1 in Figure 1), and � 1(x; y) and � 2(x; y) are the
carrier phase modulations along thex� and y� axes.

Before deformation, � 1 and � 2 model the deviation from ideality of the manufactured grid. Af-
ter deformation, the phase modulations are caused by this deviation and to local surface displace-
ments brought by deformation. The displacements along thex- and y-axes are actually propor-
tional to � � 1 and � � 2 respectively, and the linearized strain components are linear combinations
of � @�1=@x, � @�1=@y, � @�2=@x, and � @�2=@y, where � is the di�erence between the maps before
and after deformation [2]. It is important to note that the derivatives of � 1 and � 2 are very small with
respect to 2�f for most constitutive materials used in real structures (10� 2 � 10� 4 vs. 2�= 5 pixel� 1).
This property allows us to go beyond standard approaches based on Fourier transform to analyze grids
used in, e.g., fringe pattern analysis in optical interferometry [13, 25].

A major cause of measurement uncertainty is sensor noise. The uncertainty on the phases and their
derivatives has been quanti�ed in the case of the classic windowed Fourier estimation of the phase in [23]
after [24] for an ideal Gaussian noise (cf. [20] for a short presentation) and inthe case of displacement
and strain components in [10] for a realistic Poisson-Gaussian noise. Reducing the uncertainty could
be achieved by reducing �rst the noise level in the grid images. It is not possible to use o�-the-shelf
denoising algorithms from the image processing literature (see, e.g., the recent review papers [16, 17])
since the aim here is to obtain a guaranteed measurement of tiny quantities instead of a pleasing-
to-the-eye output. A simpler, well-founded approach would be to average a series ofT views of the
�xed grid. The intensity measured at a given pixel being made of the \true" intensity added to an
independent noise, this average would be a consistent unbiased estimation of the true intensity, within
a O(1=

p
T) con�dence interval. However, the experimental setting requires large magni�cation factors.

2



 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

1

1.5

2

2.5

3

3.5

x 10
4

0 20 40 60 80 100 120 140 160 180 200
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

t

gr
ey

 le
ve

l

Figure 1: Left: Close-up of the grid on a deformed specimen. In this typical example, the deformations
are not visible to the naked eye. Right: Typical time evolution of the gray level of three distant pixels
lying between lines of the grid. The in-phase oscillations are due tomechanical vibrations and not to
the sensor noise. Note that the output of the 12-bit Sensicam QE camera which is used here is natively
encoded in a 16-bit image by simply multiplying the gray levels by 24, which explains the range of the
pixel intensities.

For example, in Figure 1 (left) the side of each pixel measures 40 micrometers on the specimen. Even
though the camera and the testing machine are carefully installed and �xed, residual vibrations generally
occur, as depicted in Figure 1 (right). This is due to the fact that experiments are generally carried out
in practice with testing machines directly resting on concrete slabs, not on optical tables. Even though
this does not correspond to harsh experimental conditions, micro-vibrations borne by slabs generally
induce slight variations from one image shot by the camera to another. These variations are added
to the noise due to camera sensor. Consequently, there are legitimate questions on the impact of this
additional impairment on the image averaging procedure, which is commonly performed to decrease the
impact of sensor noise on images and is a built-in function of some cameras [1]. As a consequence of
these residual vibrations, it will be shown that the average pixel intensity does not converge to the true
underlying intensity, contrary to the perfectly static case.

The contribution of this paper is to prove that the averaged grid image isactually a biased estimator
of the noise-free grid (this property being general and not speci�c togrid images), but that the phases
and phase derivatives estimated from the averaged grid are still improved by this averaging procedure.
We also show that estimating these quantities from each grid image separately and averaging afterwards
basically gives the same result, though this latter case is much more computationally intensive. It is
noteworthy that these simple procedures do not need any estimation ofthe vibration amplitude a�ecting
each image, contrary to most existing stacking or super-resolution approaches (see [27] for an example
in thermographic imaging). Let us also mention that we assume here that theexposure time is short
enough so that no motion blur can be observed in the imaged grids, which isrealistic in practical
experiments since the light source is su�ciently powerful to permit short exposures.

The paper is organized as follows. Section 2 discusses the theoreticalmodel. Section 3 con�rms the
theory on real data and on synthetic data for a sanity check. We conclude with Section 4.
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2 Noise reduction by image averaging in the presence of vibrations

Let us consider a series ofT images impaired by vibrations. The gray level of a pixel (x; y) in the t-th
image can be modeled by

v(x; y; t ) = s(x + � t ; y + � t ) + ns(x+ � t ;y+ � t ) (x; y; t ) (2)

where

� s(x; y) is the unknown noise- and vibration-free reference image.

� (� t ; � t ) is the unknown displacement translation vector due to vibrations between the reference
image and the t-th image. It is an independently identically distributed 2-D 0-mean random
process.

� nl (x; y; t ) is a random variable modeling an additive signal-dependent noise, independently dis-
tributed in x; y; t , such that its expectation is 0 and its variance is a linear function of the gray
level l . For instance, this model is valid for the Poisson-Gaussian noise a�ecting linear CMOS or
CCD sensors [7, 8, 9, 12] which are used in practice [4].

The model of (2) was used in [22] (see also [21]) for sensor noise measurement from a series of grid
images a�ected by vibrations.

Let us assume that the amplitude of the vibrations is small enough so that it is justi�ed to identify
s(x + � t ; y + � t ) and its second-order Taylor expansion such that

s(x + � t ; y + � t ) = s(x; y) + ( � t ; � t )r s(x; y) +
1
2

(� t ; � t )Hs(x; y)( � t ; � t )T (3)

where r s is the gradient and Hs is the Hessian matrix of s. Note that the model in [21, 22] just needs
a simpler �rst-order expansion which makes the subsequent calculations easier. The reason behind this
is that these latter papers do not require accurate local estimations but rest on spatial averages which
discard the e�ect of the Hessian in (3).

The next section discusses the grid image obtained by averaging the series of the T images a�ected
by vibrations.

2.1 E�ect of vibrations on the averaged image

In the remainder of this paper, the standard deviation (resp. variance) of any random variable X is
denoted by Std(X ) (resp. Var(X )). The covariance of two random variablesX and Y is noted Cov(X; Y ).
Let X be the empirical mean 1=T

P T
t=1 X (t) of any independent random process (X (t))1� t � T . Let us

recall that if X has 0 mean, thenX 2 is an asymptotically unbiased estimator of the variance ofX .
Using (2) and (3),

v(x; y) = s(x; y) + ( �; � )r s(x; y) +
1
2

� 2 @2s
@x2

(x; y) +
1
2

� 2 @2s
@y2

(x; y) + ��
@2s

@x@y
(x; y)

+
1
T

X

t

ns(x+ � t ;y+ � t ) (x; y; t ) (4)

Since the expectation of the noisen is zero, and� t , � t are also 0-mean random variables (yielding
E(� 2) = Var( � ), E (� 2) = Var( � ), and E(�� ) = Covar( �; � )), this proves the following proposition.
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Proposition 2.1 The expectation of the averaged imagev is

E(v) = s +
1
2

Var (� )
@2s
@x2

+
1
2

Var (� )
@2s
@y2

+ Covar(�; � )
@2s

@x@y
(5)

or in a compact manner:

E (v) = s +
1
2

div (Var (�; � ) � r s) (6)

where div(F ) is the divergence of any vector �eldF and Var(�; � ) is the variance-covariance matrix of
the 2D process(� t ; � t ).

Within this model, the averaged intensity at ( x; y) may be a biased estimator ofs(x; y), depending
on the second derivatives values with respect to the variance-covariance matrix. In the following, the
pattern pitch of a typical grid image s being limited to a few pixels, the second derivatives are likelyto
be relatively large at every pixel, contrary to natural images where largeiso-intensity regions are likely
to appear. This remark also holds for random patterns used in digital image correlation for instance [26].
An averaged grid imagev is thus likely to be a biased estimator of the ideal, vibration- and noise-free
image s.

Let us carry on with the calculation of v by specializing to grid images and by using some information
about the physical quantities which are involved. The reference images satis�es (1). Its �rst and second
derivatives are given by the chain rule. For example,

@s
@x

(x; y) =

A
2

�
2�f +

@�1
@x

(x; y)
�

`0(2�fx + � 1(x; y)) +

A
2

@�2
@x

(x; y)`0(2�fy + � 2(x; y)) (7)

It has been reminded in the introduction that the problem of interest is characterized by the tiny
values of the derivatives of� compared to 2�f . It is thus legitimate to simplify (7) into

@s
@x

(x; y) =

A
2

2�f ` 0(2�fx + � 1(x; y)) (8)

Similarly, the �rst and second derivatives of s simplify into

@s
@y

(x; y) =

A
2

2�f ` 0(2�fy + � 2(x; y)) (9)

@2s
@x2

(x; y) =

A
2

(2�f )2 `00(2�fx + � 1(x; y)) (10)

@2s
@y2

(x; y) =

A
2

(2�f )2 `00(2�fy + � 2(x; y)) (11)

@2s
@x@y

(x; y) = 0 (12)

where `0 and `00are respectively the �rst and second derivatives of the 1-D 2� -periodic function `.
If the Fourier series expansion of̀ writes

P
k2 Z dkeik , then the expansion of`0 writes

P
k2 Z ikdkeik

and the expansion of`00writes �
P

k2 Z k2dkeik .
With (4) and the simpli�cations given by (8-12), the averaged grid image v thus satis�es the following

proposition.

Proposition 2.2 An averaged grid imagev is such that:

v(x; y) =
A
2

�
2 + 
` 1(2�fx + � 1(x; y)) + 
` 2(2�fy + � 2(x; y))

�
+

1
T

X

t

ns(x+ � t ;y+ � t ) (x; y; t ) (13)
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where the Fourier series expansion of̀ 1 writes

`1(x) =
X

k2 Z

�
1 + i2�fk � �

1
2

(2�f )2k2� 2

�
dkeikx (14)

= l(x) +
X

k2 Z

�
i 2�fk � �

1
2

(2�f )2k2� 2

�
dkeikx (15)

and the same relation holds for̀ 2 with � instead of � , namely:

`2(x) =
X

k2 Z

�
1 + i2�fk � �

1
2

(2�f )2k2� 2

�
dkeikx (16)

= l(x) +
X

k2 Z

�
i 2�fk � �

1
2

(2�f )2k2� 2

�
dkeikx (17)

When the number of images is large enough to identify� with E(� ) (=0) and � 2 with Var( � ) (resp.
� with E(� ) and � 2 with Var( � )), then `1(x) simpli�es into `1(x) = `(x) �

P
k2 Z

1
2(2�f )2k2Var( � )dkeikx

(resp. `2(x) = `(x) �
P

k2 Z
1
2(2�f )2k2Var( � )dkeikx ). In accordance with the intuition, one can see that

vibrations perfectly distributed along the x- (resp. y-) axis a�ect the grid line perpendicular to this
direction, and that the e�ect is all the larger as the vibration amplitud e (proportional to Std( � )) is
large with respect to the pattern pitch ( p = 1=f ).

By de�nition of n, the expectation of the noise component in (13) is zero. A straightforward
computation gives the following property on the variance.

Proposition 2.3 The variance of the averaged grid image is such that:

Var

 
1
T

X

t

ns(x+ � t ;y+ � t ) (x; y; t )

!

= O(1=T) (18)

Indeed, in the Poisson-Gaussian noise model commonly adopted for camerasensor noise [9], a straight-
forward calculation shows that the noise variance linearly depends on the expected intensity [7, 8, 12, 22].
Noting K and L respectively the slope and the intercept of this linear relation, henceKl + L the vari-
ance of the noisenl a�ecting a pixel of expected intensity l , the variance of the noise component in (13)
satis�es

Var

 
1
T

X

t

ns(x+ � t ;y+ � t ) (x; y; t )

!

=
1

T2

X

t

(Ks (x + � t ; y + � t ) + L) (19)

=
K
T

 

s(x; y) + ( �; � )r s(x; y)

+
1
2

� 2 @2s
@x2

(x; y) +
1
2

� 2 @2s
@y2

(x; y) + ��
@2s

@x@y
(x; y)

!

+
L
T2 (20)

= O(1=T) (21)

To sum up, we can say that the average grid image is a biased estimation of the unknown noise-free
grid (cf Prop. 2.1), and that, according to Prop. 2.2, it is equivalent to a grid image whose line pro�les
along each direction has been modi�ed into`1 and `2, added to aO(1=T) noise component (Prop. 2.3).
The next section quanti�es to what extent the phase and phase derivative maps (hence displacements
and strain components) are a�ected by the bias induced by the vibrations in the averaged grid image.
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2.2 Estimating the phase and phase derivative from the averaged grid im age

The classic route to estimate the phase maps� 1 and � 2 (and their derivatives) from any grid image u,
either averaged or not, is to use the windowed Fourier transform [4, 25].Let us note

	 1(v)(x; y) =
Z

R2
v(�; � )g� (� � x; � � y)e� 2i�f � d� d� (22)

	 2(v)(x; y) =
Z

R2
v(�; � )g� (� � x; � � y)e� 2i�f � d� d� (23)

In practice g� is a Gaussian window of standard deviation� . The calculated 	 1 and 	 2 are used in [4]
(after [25]) to estimate � 1 and � 2. Since the phase derivatives are very small with respect to 2�f , it is
proved in [20, 23] that the following approximations are actually valid:

arg(	 1(v)) = arg( d1) + g� � � 1 + n (24)
@arg(	 1(v))

@�
= g� �

@�1
@�

+ n0 (25)

where � denotes the 2D convolution, andd1 denotes as above the �rst Fourier coe�cient of the periodic
line pattern `, and n and n0 are spatially correlated 0-mean noise processes. (The same equations
as (24)-(25) hold for 	 2 and � 2.)

In the case of a homoscedastic noise, it is proved in [23] that the variances ofn and n0are proportional
to v=(� 2jd1j2) and v=(� 4jd1j2) respectively, wherev is the variance of the noise in the grid image andj � j
is the norm of any complex number. In the case of a realistic signal-dependent Poisson-Gaussian noise, it
is shown in [10] that this characterization is still valid provided th e generalized Anscombe transform [18]
has been applied to the images to stabilize the variance beforehand. A typical example of a realistic
standard deviation of the noise in the phase maps is 3� 10� 3 rad and 5� 10� 4 rad � pixel� 1 in the phase
derivative maps [10].

It is important to note that (24-25) and the remark above mean that a compromisemust be found
between a large� which smooths out the noise in the phase and phase derivative and a small� which
makesg� � � 1 to get closer to the sought phase� 1. Consequently, reducing the noise in the grid image
(before phase estimation) would make it possible to use smaller� , up to the limit reminded in [23] which
imposes� � 1=f . We can see that the vibrations change thejd1j term into j1 � 1

2(2�f )2Var( � )jjd1j
obtained by simplifying (14) for large T, which is smaller than jd1j. In spite of this negative impact on
the variance of n and n0, time-averaging is still valuable because of theO(1=T) decreasing of the noise
in the grid image (Prop. 2.3).

In the remainder of this section, we quantify the convergence rate of the phase and phase derivative
estimated from the averaged grid to the unknown phase and phase derivative from the noise-free grid.
From (24)-(25) and the averaged gridv given by (13):

arg(	 1(v))( x; y) = arg(	 1(s))( x; y) + � 1 + nT (x; y) (26)
@arg(	 1(v))

@�
(x; y) =

@arg(	 1(s))
@�

(x; y) + n0
T (x; y) (27)

where as aboves is the reference grid,nT and n0
T have a variance proportional to the variance of the

noise in v (hence decreasing in 1=T from (21)), and

� 1 = arg
�

(1 + 2 i�f � �
1
2

(2�f )2� 2)d1

�
� arg(d1) (28)
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A simple calculation (see appendix) proves that:

� 1 = arctan

 
2�f �

1 � 1
2(2�f )2� 2

!

(29)

The same relation holds for� 2 with respect to � :

� 2 = arctan

 
2�f �

1 � 1
2(2�f )2� 2

!

(30)

It can be observed that � 1 and � 2 do not depend ond1.
The question is now, how does the additional� 1 (resp. � 2) term a�ect the estimation of arg(	 1(s))

(resp. arg(	 2(s))? Under the mild assumption that � follows a symmetric law, and considering� 2

equal to Var(� ), then the expectation of � 1 is 0. One has indeedE(h(X )) = 0 as soon ash (= arctan)
is an odd function and X (= 2 �f �= (1 � (2�f )2Var( � )=2)) has a symmetric distribution function.
Estimating the variance of � 1 is a bit tricky but an approximation is given by the delta-method [19]:
Var( h(X )) ' (h0(E (X ))) 2Var( X ). Here, E(X ) = 0 hence h0(E (X )) = 1. The variance of � 1 is thus
given by the following proposition.

Proposition 2.4 Under the above-mentioned assumptions,� 1 is a 0-mean random variable whose vari-
ance is given by:

Var (� 1) '

 
2�f

1 � 1
2(2�f )2Var(� )

! 2

Var(� ) (31)

A similar formula holds for � 2.
An experimental assessment (cf [22]) shows that in a typical case the peak-to-peak amplitude of

the vibrations can be up to 10% of the size of a pixel on the specimen. Thestandard deviation of �
is hence around 0.05 (twice the standard deviation being approximatelyequal to 0:1). With f being
typically equal to 1=5 pixel� 1, the variance of � 1 is approximately (1:34)2Var( � ). Now, the variance
of the sample mean� is known to be 2Var2(� )=(T � 1) if � is a Gaussian process [14]. The resulting
standard deviation of � 1 is therefore approximately 1:34�

p
2 � 0:05=

p
T � 1 ' 0:1=

p
T.

The estimated phase thus di�ers from the actual phase in a 0-mean spatially correlated noise nT

whose standard deviation decreases as 1=
p

T, added to a spatially constant 0-mean random� whose
standard deviation is proportional to Std( � ) = O(1=

p
T), cf. (26,29,31). The error � is likely to attain

values as large as 2Std(� 1), which may be larger than the standard deviation of the noise term in the
case of strong vibrations, as illustrated in Section 3. Concerning the estimated phase derivatives, they
turn out to be independent from the vibrations ( � t ; � t ). It only di�ers from the actual value in a 0-mean
correlated noisen0

T decreasing as 1=
p

T, cf. (27).
The method for retrieving the phases and their derivatives from biased averaged grid, which is

described in this section, is called methodA .

2.3 Averaging phases and phase derivatives estimated from each of the grid images
separately

Instead of estimating the phase from the biased averaged grid, it is possible to estimate the phase from
each of theT images separately with (24-25), and to reduce noise afterwards by averagingthe T phase
maps.
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With the same notation as above, the averaged phase and phase derivatives satisfy (the same equa-
tions hold for 	 2):

arg(	 1(v)) = � 1 + arg(	 1(s)) + n (32)

@arg(	 1(v))
@�

=
@arg(	 1(s))

@�
+ n0 (33)

where the averaged noisesn and n0decrease as 1=
p

T, and � 1 is the average of the arctan
�
2�f � t =(1 � (2�f � t )2=2)

�

whose expectation is 0 as soon as� t has a symmetric distribution function. The estimation of the vari-
ance of � 1 obtained by the delta-method is: Var(� 1) ' (2�f )2Var( � ), yielding a O(1=T) decreasing of
the variance of � 1.

This results in an alternative method to smooth out the noise in the phase and phase derivative
maps, which is much more computationally intensive since it necessitates to compute T windowed
Fourier transform (for each of the phases or phase derivatives), insteadof a single transform (over the
averaged grid image) with methodA .

The method described in this section is called methodB .

3 Experiments

Methods A (Section 2.2) and B (Section 2.3) are based on approximations. It is necessary to exper-
imentally assess their validity. Following the discussion in Section 2.2, the value of the size� of the
analysis window is chosen to be equal to the pattern pitchp which is the minimum admissible value [23].
In Sections 3.1 and 3.2,� = p = 5 pixels.

3.1 Real data set

This �rst example illustrates the e�ect of time averaging on a set of real strain maps. A tensile test
was performed on an open-hole specimen made of aluminum (thickness: 2 mm, width: 50 mm, length:
250 mm, diameter of the hole: 12 mm). A heterogeneous strain �eld is induced around the hole.
Hundred images were taken with a Sensicam QE camera in the referencecon�guration as well as for
a force applied equal to 5000 N. The two series are impaired by mechanical vibrations. Of course, the
vibrations do not equally a�ect the two series.

Once � 1 and � 2 are estimated from a grid image before and after deformation as explained above,
it is possible to derive the in-plane displacementux and uy in the x- and y-directions by forming the
following phase variations: �

ux = � p
2� � � 1

uy = � p
2� � � 2

(34)

where p = 1=f is the pattern pitch (cf (1)) and � � i denotes the di�erence of the phases before and
after deformation. The linearized strain components are eventually given by the symmetrized part of
the displacement gradient [2]. Thus:

8
><

>:

" xx = @ux
@x = � p

2� � @�1
@x

" yy = @uy
@y = � p

2� � @�2
@y

2" xy = @ux
@y + @uy

@x = � p
2�

�
� @�1

@y + � @�2
@x

� (35)

Figure 2 shows the time evolution of some values of the displacementux in the x-direction (resp. of
the displacementuy in the y-direction) estimated from the t-th images of each series. While the average
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Figure 2: Three plots of ux (x; y) (left) and uy(x; y) (right) measured at three distant locations on the
grid. In-phase 
uctuations are caused by the residual vibrations.

displacement depends on the local deformation of the specimen (addedto a noise component), in-phase

uctuations correspond to the residual vibrations in the x- (resp. y-) direction. A translation of the
reference grid of� t along thex-direction gives an additional 2�f � t displacement. The standard deviation
of this additional displacement is hence 2�f Std(� ). The measured displacement being obtained by (34),
the standard deviation on ux is

p
2 2�f Std(� ) p

2� =
p

2 Std(� ) (the result is multiplied by
p

2 to account
for the fact that two phase maps are subtracted to calculate a displacement map). In this experiment,
we have measured a standard deviation equal to 0.01 in thex-direction and to 0:015 in the y-direction,
hence Std(� ) ' 0:007 and Std(� ) ' 0:01.

Figure 3 shows the bene�t of time averaging on the strain map in terms ofvisual aspect since
the noise due to the sensor noise propagation through the image processingprocedure progressively
decreases. One can see that the noise component (the elongated \blobs" clearly visible in the T = 1
case) vanishes in the strain maps when the number of averaged grid imagesgrows, yielding a clearer
visualization of the phenomena of interest. Some straight shapes can be noticed in the T = 100 case.
They are not likely to have a mechanical explanation and are certainly caused by manufacturing defects
of the grid.

It must be pointed out that no ground truth is really available here: a closed-form solution for
the open-hole specimen is available within the framework of elasticity [28], but boundary conditions
actually applied during the test may di�er from those applied in the model. The same remark holds for
the material properties. It is therefore not really possible to check here that the averaged strain map
is a�ected or not by a bias due to the fact that the averaged grid image is a biased estimator of the
noise-free grid image. The simulations presented in the section below were carried out for this purpose.
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