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Automated Synthesis of Mediators
to Support Component Interoperability

Amel Bennaceur and Valérie Issarny

Abstract—Interoperability is a major concern for the software engineering field, given the increasing need to compose components

dynamically and seamlessly. This dynamic composition is often hampered by differences in the interfaces and behaviours

of independently-developed components. To address these differences without changing the components, mediators that

systematically enforce interoperability between functionally-compatible components by mapping their interfaces and coordinating

their behaviours are required. Existing approaches to mediator synthesis assume that an interface mapping is provided which

specifies the correspondence between the operations and data of the components at hand. In this paper, we present an approach

based on ontology reasoning and constraint programming in order to infer mappings between components’ interfaces automatically.

These mappings guarantee semantic compatibility between the operations and data of the interfaces. Then, we analyse the

behaviours of components in order to synthesise, if possible, a mediator that coordinates the computed mappings so as to make

the components interact properly. Our approach is formally-grounded to ensure the correctness of the synthesised mediator.

We demonstrate the validity of our approach by implementing the MICS (Mediator synthesIs to Connect Components) tool and

experimenting it with various real-world case studies.

Index Terms—Interoperability, Constraint Programming, Automated Synthesis, Mediators, Protocols

✦

1 INTRODUCTION

Interoperability is a fundamental challenge for soft-
ware engineering [1]. Today’s systems are increasingly
developed by reusing and integrating existing com-
ponents. However, even though these components
should be able to integrate since, at some high level
of abstraction, they require and provide compatible
functionalities, the conflicting assumptions that each
of them makes about its running environment hinder
their successful interoperation. Indeed, components
cannot readily be reused when inconsistent semantics
are buried in their interfaces or behaviours [2].

There exists a wide range of approaches to en-
able independent components to interoperate [3],
[4]. Solutions that require performing changes to
the components are usually not appropriate since
the components to be integrated may be built by
third parties (e.g. COTS—Commercial Off-The-Shelf—
components or legacy systems); no more appropriate
are approaches that prune the behaviour leading to
mismatches since they also restrict the components’
functionality [5]. Therefore, many solutions that ag-
gregate the disparate components in a non-intrusive
way, i.e. without changing the internal implementation
of these components, have been proposed [4], [6]–
[9]. These solutions use intermediary middleware
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entities, called mediators [10], [11] (also called connector
wrappers [6] or mediating adapters [7]), to connect
heterogeneous components despite disparities in their
data and/or interaction models by performing the
necessary coordination and translations while keeping
them loosely-coupled.

Nevertheless, creating mediators requires a substan-
tial development effort and a thorough knowledge
of the application-domain. Moreover, the increasing
complexity of today’s software components, sometimes
referred to as Systems of Systems [12], makes it difficult
to develop ‘correct’ mediators manually [13]; correct
mediators guarantee that the components interact
without errors (e.g. deadlocks) and reach their ter-
mination successfully. Therefore, formal approaches
are necessary to characterise components precisely,
reason about their interaction, and generate mediators
automatically [7], [14].

First, automatically generating mediators helps de-
velopers to manage the bulk of the systems they need
to integrate. Indeed, developers increasingly have to
incorporate to their systems convenient services such
as instant messaging or social interaction. Although,
most of these services provide similar functionalities,
their interfaces are usually heterogeneous. For example,
Google Talk and Facebook chat both have instant
messaging capabilities but expose them using different
interfaces. Similarly, Facebook and Google+ allow
social interaction between their users using distinct
interfaces. By providing an automated mediation
solution, developers no longer have to struggle with
heterogeneous interfaces since the generated mediators
perform the necessary translations to compensate for
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the differences between these interfaces. The auto-
mated generation of mediators also enables seamless
and spontaneous interaction between components in
highly dynamic and extremely heterogeneous envi-
ronments by computing, at runtime, a mediator that
ensures their interoperation.

Existing approaches to the automatic generation of
mediators assume the correspondence between the
operations of the mediated components to be given
in terms of an interface mapping [14] (also called adap-
tation contract [7]). Identifying such correspondence
requires not only knowledge about the components
but also knowledge about the domain itself.

Research on knowledge representation and artificial
intelligence has now made it possible to model and
automatically reason about domain information pre-
cisely, if not with the same nuanced interpretation that
a developer might [15]. In particular, ontologies build
upon a sound logical theory to provide a machine-
interpretable means to reason, automatically, about the
semantics of data based on the shared understanding
of the domain [16]. They play a valuable role in
software engineering by supporting the automated
integration of knowledge among teams and project
stakeholders [17]. Ontologies have also been widely
used for modelling Semantic Web Services and achiev-
ing service discovery and composition [18]. OWL-S
(Semantic Markup for Web Services) uses ontologies
to model both the functionality of a Web Service and
the associated behaviour, i.e. the protocol according to
which this Web Service interacts [19]. Besides ontology-
based modelling, WSMO (Web Service Modelling
Ontology) relies on ontologies to support runtime
mediation based on pre-defined patterns but without
ensuring that such mediation does not lead to an erro-
neous execution (e.g. deadlock) [20]. Hence, although
ontologies have long been advocated as a key enabler
in the context of service mediation, no principled ap-
proach has been proposed for the automated synthesis
of mediators by systematically exploiting ontologies.
We argue that interoperability should not be achieved
by defining yet another ontology nor yet another
middleware but rather by exploiting the knowledge en-
coded in existing domain-specific ontologies together
with the behavioural description of components and
using them to generate mediators automatically. These
mediators bridge the interoperability gap between
heterogeneous components by delivering information
when it is needed, in the right format, with the original
business context intact.

This paper focuses on functionally-compatible com-
ponents, i.e. components that at some high level of
abstraction require and provide compatible function-
alities, but are unable to interact successfully due to
mismatching interfaces and behaviours. This paper
concentrates on service-based components (e.g. Web
Services) rather that code-based components (e.g. Java

libraries). We propose an approach that combines
ontology reasoning and constraint programming in
order to generate a mapping between the interfaces
of these components. Then, we use the generated
mappings and examine the behaviours of both com-
ponents to automatically synthesise a mediator that
ensures their safe interaction. The mediator, if it exists,
enables the components to progress synchronously
and reach their final states with the guarantee that the
composed system is free from deadlocks. Specifically,
our contributions are:

• Efficient interface mapping using semantic reasoning
and constraint programming. We reason about the
semantics of data and operations of each compo-
nent and use a domain ontology to identify the
semantic correspondences between the interfaces
of the components, i.e. interface mapping. Inter-
face mapping guarantees that operations from
one component can safely be performed using
operations from the other component.

• Automated synthesis of mediators. We explore the be-
haviours of the two components and generate the
mediator that composes the computed mappings
so as to force the components to progress syn-
chronously. The mediator, if it exists, guarantees
that the mediated system is deadlock-free.

• Tool-support for automated mediation. We further
demonstrate the feasibility of our approach
through the MICS (Mediator Synthesis to Connect
Components) tool and illustrate its usability using
real-world case studies involving heterogeneous
components. Our semantic-based approach to the
automated generation of mediators leads to a con-
siderable increase in the quality of interoperability
assurance between heterogeneous components:
it removes the programming effort and ensures
that the components interact successfully while
preserving efficient execution time.

This paper is organised as follows. Section 2 intro-
duces the interoperable file management example that
illustrates the need for mediators to facilitate interoper-
ation between independently-developed components.
It also presents the formalism we use to specify our
inputs, which consists of ontologies to model domain
knowledge and labelled transition systems to model
the behaviour of components. Section 3 moves into
the solution space, defining the formal methodology
to compute interface mapping efficiently. Section 4
describes the algorithm used to generate mediators.
Section 5 presents the MICS tool used to synthesise
mediators and deploy them in the environment. Sec-
tion 6 reports on the experiments we conducted to
validate our approach. Section 7 examines related
work. Section 8 discusses future work. Finally, Section 9
concludes the paper.
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2 INTEROPERABILITY USING MEDIATORS

To highlight the problem of interoperability in dis-
tributed systems, we examine the case of two heteroge-
neous file management systems: WebDAV and Google
Drive. We present the models we use to describe them
and outline our approach for the automated synthesis
of mediators that enable the successful interoperation
of these systems despite differences in their interfaces
and behaviours.

2.1 The Interoperable File Management Example

The migration from desktop applications to Web-based
services is scattering user files across a myriad of
remote servers (e.g. Apple iCloud, Google Drive, and
Microsoft Skydrive). This dissemination poses new
challenges for users, making it more difficult for them
to organise, search, and manipulate their files using
their preferred applications, and share them with
other users. This situation, though cumbersome from
a user perspective, unfortunately reflects the way file
management applications—like many other existing
applications—have evolved. As a result, users are
forced to juggle between a plethora of applications
to manage their files instead of using their favourite
application regardless of the service it relies on or the
standard on which it is based.

Among the protocols allowing collaborative man-
agement of files, WebDAV (Web Distributed Authoring
and Versioning) is an IETF specification that extends
the Hypertext Transfer Protocol (HTTP) to allow users
to create, read and change documents remotely. It
defines a set of properties to query and manage
information about these documents, organise them
using collections, and defines a locking mechanism
in order to assign a unique editor of a document
at any time. Another example is the Google Drive
service that lets users create, store, and search Google
documents and collections. It also allows users to
share and collaborate online in the editing of these
documents. These functionalities can be accessed using
a Web browser or using the Google proprietary API.

WebDAV to Google Drive Mediator

Fig. 1. Connecting a WebDAV client to Google Drive service

Although WebDAV and Google Drive offer simi-
lar functionalities and use HTTP as the underlying
transport protocol, they are unable to interoperate. For
example, a user cannot access his Google Drive doc-
uments using his favourite WebDAV client (e.g. Mac
Finder) as depicted in Figure 1. This is mainly due
to the syntactic naming of data and operations used
in each application, and the protocols according to

which these operations are performed. Our goal is
to synthesise a mediator automatically in order to
allow these two components to interact properly. In
order to reason about component interoperability and
automatically synthesise the mediator, we need to
model the components and their domain as described
in the following.

2.2 Modelling Domains using Ontologies

Each application domain has its own vocabulary. This
vocabulary has to be modelled explicitly in order
to allow computers to conduct automated reasoning
about the domain. Ontologies provide experts with a
means to formalise the knowledge about the domain
as a set of axioms that make explicit the intended
meaning of a vocabulary [21]. Besides general purpose
ontologies, such as dictionaries (e.g. WordNet1), there
is an increasing number of ontologies available for
various domains such as biology, geoscience, and social
networks, which in turn foster the development of
a multitude of search engines specially targeted for
ontologies on the Web [22].

Ontologies are supported by a logic theory to
reason about the properties and relations holding
between the various domain entities. In particular,
OWL (Web Ontology Language2), which is the W3C
standard language to model ontologies, is based on
description logics. More specifically, we focus on OWL
DL, which is based on a specific description logic,
SHOIN (D) [16]. In the rest of the paper, DL refers
to this specific description logic.

While traditional formal specification techniques
(e.g. first-order logic) might be more powerful, DL of-
fers crucial advantages: it excels at modelling domain-
specific knowledge while providing decidable and
efficient reasoning algorithms [23]. DL specifies the
vocabulary of a domain using concepts and relation-
ships between these concepts. Each concept is given a
definition as a set of logical axioms, which can either
be atomic or defined using different operators such
as disjunction (⊔), conjunction (⊓), and quantifiers
(∀, ∃). Relationships between concepts are defined
using object properties. The semantics of DL is defined
in terms of an interpretation I consisting of a non-
empty set ∆I (the domain of the interpretation) and an
interpretation function, which assigns to every atomic
concept A a set AI ⊆ ∆I and to every object property
R a binary relation RI ⊆ ∆I × ∆I . We provide an
overview of the semantics of the basic DL operators
in Table 1 and refer the interested reader to [16] for
further details.

For example, consider the extract of the file man-
agement ontology depicted in Figure 2. We build
this ontology by extending the NEPOMUK File
Ontology.3 The NEPOMUK File Ontology (NFO)

1. http://www.w3.org/TR/wordnet-rdf/
2. http://www.w3.org/TR/owl2-overview/
3. http://www.semanticdesktop.org/ontologies/nfo/
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<<OWLClass>>
MoveFile

≐ ReadFile ⨁ WriteFile  ⨁ DeleteFile

<<OWLClass>>
Document

≐ Presentation  SpreadSheet  TextDocument 

 MindMap  BolbDocument

isPartOf{some}

<<OWLClass>>
Resource

≐ File  Collection

<<OWLClass>>
TextDocument

<<OWLClass>>
SpreadSheet

<<OWLClass>>
Presentation

<<OWLClass>>
MindMap

<<OWLClass>>
BolbDocument

<<OWLClass>>
ResourceProperties

∃Title.String

∃CreationDate.Date

∃LastUpdate.Date

∀Notes.String

hasProperties{some}

<<OWLClass>>
Metadata

<<OWLClass>>
Content

hasPart{some}

hasPart{some}

<<OWLClass>>
ReadFile

<<OWLClass>>
WriteFile

<<OWLClass>>
DeleteFile

<<OWLClass>>
File

≐ Metadata ⨁!Content

<<OWLClass>>
Collection

hasPart{some} hasPart{some}hasPart{some}

<<OWLClass>>
DownloadDocument

<<OWLClass>>
UploadDocument

<<OWLClass>>
DeleteDocument

<<OWLClass>>
URI

<<OWLClass>>
DestinationURI

<<OWLClass>>
SourceURI

hasURI{some}

Subsumption

Object Property - ontological relation

Ontological concept, originally defined in NFO

property{cardinality}

...<<OWLClass>>

Legend

Ontological concept, not included in NFO...<<OWLClass>>

Fig. 2. The file management ontology

DL Opertor Semantics

Conjunction (C ⊓D)I = CI ∩DI

Disjunction (C ⊔D)I = CI ∪DI

Universal quantifier (∀R.C)I = {x ∈∆I | ∀y.(x,y) ∈ RI ⇒ y ∈ CI}
Existential quantifier (∃R.C)I = {x ∈∆I | ∃y.(x,y) ∈ RI ∧ y ∈ CI}

Aggregation (C ⊕D)I = {x ∈∆I | ∃y.(x,y) ∈ hasPart
I

∧ y ∈ CI ∧∃z.(x,z) ∈ hasPart
I ∧ z ∈DI}

C and D are concepts and R is an object property.

TABLE 1. Overview of DL operators

defines the vocabulary for describing and relating
information elements that are commonly used in
file management applications. A Resource can be
a file or a directory (i.e. a collection of files). In
DL, this is written: Resource

.
= File ⊔ Collection.

The dot above the “equals” symbol designates a
declarative axiom, a.k.a., user-defined axioms. In ad-
dition, a Resource concept has some resource prop-
erties: Resource ⊑̇ ∃hasProperties.ResourceProperties.
ResourceProperties has a title of the built-in type
String as well as dates for creation and last update.
ResourceProperties may also have one or more notes
of the the built-in type String.

We describe the aggregation of concepts, where
different concepts are composed together to build
a whole, using the W3C recommendation for part-
whole relations—hasPart.4 A concept E is an aggre-
gation of concepts C and D, written E = C ⊕ D,
providing both C and D are parts of E, i.e. E =
(∃hasPart.C) ⊓ (∃hasPart.D). For example, the File

concept is defined as the aggregation of the Metadata

and Content concepts, meaning that each file instance
f ∈ File encompasses a Metadata instance (∃m ∈
Metadata ∧ (f,m) ∈ hasPart), as well as a Content

instance (∃c ∈ Content ∧ (f, c) ∈ hasPart).
DL is used to support automatic reasoning about

concepts and their relationships, in order to infer new
relations that may not have been recognised by the

4. http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

ontology designers. Traditionally, the basic reasoning
mechanism is subsumption.

Definition 1 (Subsumption): A concept C is sub-
sumed by a concept D, written C ⊑ D iff any instance
(sometimes called individual) of C also belongs to D.
In addition, all the relationships in which D instances
can be involved are applicable to C instances, i.e. all
properties of D are also properties of C.

For example, since File ⊑ Resource and
Resource ⊑̇ ∃hasProperties.ResourceProperties, it
can be inferred that a File also has some properties
File ⊑ ∃hasProperties.ResourceProperties. Subsumption
is a partial order relation, i.e. it is reflexive,
antisymmetric, and transitive. As a result, the
ontology can be represented as a hierarchy of
concepts, which can be automatically inferred by
ontology reasoners based on the axioms defining the
ontological concepts.

2.3 Modelling Components by Combining Ontolo-
gies and Labelled Transition Systems

While ontologies allow domain knowledge to be
defined formally, describing knowledge about the
software components themselves is equally important.
To enable automated reasoning about interoperability
between components, we must represent explicitly all
the knowledge implicitly encoded in each component.
This knowledge is explicitly represented in the compo-
nent model that describes the component’s capability,
interface signature and behaviour. Figure 3 depicts the
model of the WebDAV client.

The capability gives a macro-view of the component
by specifying the high-level functionality it requires
from or provides to its environment [19]. For example,
the WebDAV client (denoted WDAV) whose model is
described in Figure 3 requires a file management capability.

The interface signature, or simply interface, of the
component gives a finer grained description of the
operations and data that the component manipulates.
More precisely, the component’s interface defines the
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WDAV Model

Interface signature (              )

Behaviour

<Authenticate, {Username, Password}, {Authorisation}>    

<Lock, {SourceURI}, {Acknowledgment}>

<MoveFile, {SourceURI, DestinationURI}, {Acknowledgment}>

<ReadFile, {SourceURI}, {File}>

<WriteFile, {File}, {Acknowledgment}>

<DeleteFile, {SourceURI}, {Acknowledgment}>

<Unlock, {SourceURI}, {Acknowledgment}>

<Logout,   , {Acknowledgment}>

Behaviour (              )

Capability (                  )

Requires fileManagement

Authenticate

Lock
MoveFile

ReadFile

WriteFile

DeleteFile

Unlock

Logout

;

PWDAV=(Authenticate ! P1),
P1 =(Lock ! P2 | Logout ! END),
P2 =(MoveFile ! P2 | ReadFile ! P2

| WriteFile ! P2 | DeleteFile ! P2

| Unlock ! P1).

IWDAV

PWDAV

CapWDAV

Fig. 3. Model of the WebDAV client

set of observable actions that the component exchanges
with its running environment. It is partitioned into
required and provided actions, with the understanding
that required actions are received from and con-
trolled by the environment, whereas provided actions
are emitted and controlled by the component. A
required action α = 〈op, i, o〉, where the symbols
op, i, and o are references to concepts in a domain
ontology O, represents a client-side invocation of
an operation op by sending the appropriate input
data i and receiving the corresponding output data o.
For example, the 〈ReadFile, {SourceURI}, {File}〉 action,
belonging to WDAV’s interface, designates a required
action that perform the ReadFile operation by taking
SourceURI as input and producing File as output.
ReadFile, SourceURI, and File are all concepts in the file
management ontology depicted in Figure 2. In order
to reason about the meaning of actions rigorously,
the component model is focused on the semantic
descriptions of actions, specified using references to
the domain ontology, rather than their syntactic de-
scriptions, specified using XML schemas. On the prac-
tical side, the syntactic descriptions of all operations
and input/output data include semantic annotations
referring to concepts in the domain ontology. These
annotations can either be specified by the developer of
the component or automatically inferred using learning
techniques [24], [25].

The dual provided action β = 〈op, i, o〉 uses the
inputs and produces the corresponding output.5 Since
WDAV only invokes operations from the WebDAV
service, its interface contains only required actions.

The behaviour of a component specifies its interaction
with the environment and models how the actions
of its interface are coordinated in order to achieve
the specified capability. We build upon state-of-the-art
approaches to formalise component interactions [6]
using Finite State Processes (FSP). FSP [26] is a process

5. We use the overline as a convenient shorthand to denote
provided actions.

algebra that has proven to be a convenient formalism
for specifying concurrent components, analysing, and
reasoning about their behaviours. The syntax of FSP
is summarised in Table 2, while the interested reader
is referred to [26] for further details. The behavioural
specification of the WebDAV client (PWDAV) in FSP is
depicted in Figure 3. To simplify the presentation, the
actions are represented using the operation concept
alone. Note that all the concepts used to describe
actions belong to the file management ontology even
though they are not represented in Figure 2. WebDAV
clients first login. To perform any operation, clients
have to lock the resource, execute the desired opera-
tion(s) and then unlock it again. Finally, they log out
to terminate.

The semantics of FSP is given in terms of Labelled
Transition Systems (LTS) [27]. The LTS associated with
PWDAV is depicted in Figure 3. The LTS interpreting a
process P can be regarded as a directed graph whose
nodes represent the process states and each edge is
labelled with an action belonging to the component’s
interface. There exists a start node from which the
process begins its execution. There exists also a final
state, which is associated with the END process, that
indicates a successful termination of the FSP process.
The expression s

a
! s′ specifies that if the process is in

state s and engages in an action a, then it transits to

state s′. The expression s
X
⇒ s′ where X = 〈a1, . . . , an〉,

ai being actions of the component’s interface, is used
as a shorthand denoting that P transits from state s

to state s′ after it engages in a sequence of actions X .
When composed in parallel, processes synchronise on
dual actions while actions that are in the alphabet of
only one of the two processes can be executed inde-
pendently. Hence, we assume synchronous semantics.
Although the asynchronous semantics can be easily
implemented, it is hard to reason about interacting
processes under these semantics; in general, properties
of the system such as deadlocks are undecidable [28].

FSP Syntax

αP P ’s alphabet
a→ P Action prefix
a→ P |b→ P Choice
P ;Q Sequential composition
P‖Q Parallel composition
END Built-in process, denotes successful termination

TABLE 2. FSP overview

Finally, we can reasonably assume that the semantic
annotations as well as the behavioural specification
of a component are either provided with or derivable
from the component’s interface. First, there are various
approaches and standards that emphasise the need
and the importance of having such a complete speci-
fication [20], [23], [29]. Second, there is an increasing
number of advanced learning techniques and tools to
support the inference of ontological annotations [24] as
well as the extraction of behavioural models [25], [30], [31].
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Component 1 Component 2
Running-System

Level

Model Level

Emergent Middleware

Model of

Component 1

(Cap1, I1, P1)

Model of

Component 2

(Cap2, I2, P2)

Cap1 matches Cap2

Interface Mapping

Map (I1, I2) and Map (I2, I1)

Mediator Synthesis

Mediator M such that P1 and P2 progress
synchronously and reach their final states

Deployment

Functional Compatibility1    

3    

2    

4    

Ontology

O

M
IC

S

Fig. 4. Overview of our approach to the automated synthesis of mediators

2.4 Automated Synthesis of Mediators: Overview

Although the WebDAV client requires a file manage-
ment functionality that may be provided by the Google
Drive service, their interactions lead to an erroneous
execution, namely a mismatch. In general, mismatches
may occur due to inconsistencies in:

• The names and types of input/output data and op-
erations. For example, resource containers are
called folders in Google Drive and collections in
WebDAV. Google Drive also distinguishes between
types of documents (e.g. presentation, spread-
sheet) whereas WebDAV considers them all as
files.

• The granularity of operations. WebDAV provides
an operation for moving files from one location
to another whereas Google Drive does not. Still,
the move operation can be realised using existing
operations to achieve the same task, i.e. it can be
carried out by performing the upload, download,
and delete operations offered by Google Drive.

• The ordering of operations. WebDAV requires oper-
ations on files to be preceded by a lock operation
and followed by an unlock. Google Drive does
not have such a requirement. Still, it allows users
to restrict or release access to a document by
changing its sharing settings. Hence, although
the operations of the two systems can be mapped
to one another, the sequencing of actions required
by WebDAV is not enforced by Google Drive.

The mediator solves the aforementioned mismatches
by compensating for the differences in the data and
operations of the components under consideration, and
by coordinating their behaviours in order to respect
the sequences of actions expected by both of them.
In order to reason about component interoperation
automatically and generate the appropriate mediator,
we rely on the rigorous modelling of both components
as defined in Section 2.3. Also, as discussed in Sec-
tion 2.2, we use an off-the-shelf ontology O to represent
domain knowledge and utilise it to reason about the

relations holding between the data and operations
of the two components. We assume that the models
of the components are valid, i.e. they represent the
actual functional (capability, interface) and behavioural
semantics of the components at hand, and that all the
ontological concepts referred to in the models of both
components belong to the ontology O. We recognise
that this might not be the case in practice and plan
to deal with partial or changing models as well as
heterogeneous ontologies in future work.

We also use the ontology O to verify, prior to any
mediation, whether it makes sense for the components
to interact with each other by checking if they are
functionally compatible, i.e. if the capability required by
one component subsumes the capability provided by
the other component in a way similar to capability
matching in Semantic Web Services [32] (see Figure 4-❶).

A significant role of the mediator is to convert data
available on one side and make it suitable and relevant
to the other. This conversion can only be carried out
if there exists a semantic correspondence between the
actions required by one component and those provided
by the other component, that is, interface mapping
(see Figure 4-❷). The main idea is to use the domain-
specific information embodied in the ontology O in
order to select among all the possible combinations of
the actions of the components’ interfaces only those
preserving the semantics of data and operations and
for which automated transformations can be safely
performed. Subsequently, we generate the mapping
processes that receive the input/output data from one
component, execute the necessary transformations, and
send it back to the other component.

One important aspect of interface mapping is that
it can be ambiguous, i.e. the same sequence of
actions of one component may be achieved using
different sequences of actions provided by the other
component. It then becomes crucial to combine the
mapping processes in a way that guarantees that
the two components progress and reach their final



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

states without errors that cannot be caught by the
type system alone (e.g. deadlock). The gist of the
approach is then to generate a mediator M that
coordinates the mapping processes and guarantees
that the behaviour of the mediated system, which
is represented through the parallel composition of
the LTSs of both components together with that of
the mediator is free from deadlocks (see Figure 4-❸).
Notions such as bisimulation or refinement [33] cannot
be applied since they assume the use of the same set
of actions (alphabet). Neither is it possible to relabel
the LTSs beforehand since the mappings are not only
based on one-to-one correspondences but rather many-
to-many, and also because the same action (sequence
of actions) may be translated differently depending on
the state in which the system is.

Finally, the mediator is deployed and enacted as an
emergent middleware [34], which interprets the mediator
model and executes the necessary transformations to
allow the components to interact properly (see Figure 4-❹).

In Section 3 we explain how to compute interface
mapping while in Section 4 we present how to syn-
thesise the mediator. In Section 5, we describe MICS,
the supporting tool for the automated synthesis and
deployment of mediators.

3 AUTOMATED MAPPING OF INTERFACES

Establishing the semantic correspondence between the
actions of the components’ interfaces is a crucial step
towards the synthesis of mediators. In this section,
we first specify the conditions under which such a
correspondence may be established. Then, we show
how to compute interface mapping efficiently using
constraint programming [35].

3.1 Mapping Component Interfaces

Let us consider two components’ interfaces I1
and I2. Mapping I1 to I2, written Map (I1, I2),
consists in finding all pairs (X1, X2) where
X1 = 〈α1, α2, . . . , αm〉 , αi=1..m ∈ I1 and
X2 =

〈

β1, β2, . . . , βn

〉

, βj=1..n ∈ I2 such that X1

maps to X2, denoted X1 7! X2, if the required actions
of X1 can be safely performed by calling the provided
actions of X2. In addition, this pair is minimal, that is,
any other pair of sequences of actions (X ′

1, X
′

2) such
that X ′

1 maps to X ′

2 would have X1 as a subsequence
of X ′

1 or X2 as a subsequence of X ′

2. The interface
mapping is then specified as follows:

Map (I1, I2) =
{ (X1, X2)|
X1 = 〈α1, α2, . . . , αm〉 , αi=1..m ∈ I1

∧X2 =
〈

β1, β2, . . . , βn

〉

, βj=1..n ∈ I2
∧X1 7! X2

∧ 6 ∃ (X ′

1, X
′

2) | X ′

1 = 〈α1, α2, . . . , αm′〉, αi=1..m′ ∈ I1
∧X ′

2 =
〈

β1, β2, . . . , βn′

〉

, βj=1..n′ ∈ I2
∧ (X ′

1 7! X ′

2) ∧ (m′ < m) ∧ (n′ < n)
}

Likewise, Map (I2, I1) represents the set of all pairs
(X2, X1), where X2 is a sequence of required actions
of I2 and X1 is a sequence of provided actions of I1,
such that X2 maps to X1 and this mapping is minimal.

Each mapping relation is associated with a process
that specifies how the sequences of actions are coor-
dinated. In the following, we specify the conditions
that represent the safety properties which should be
satisfied by the mapping relation (7!) in order to
guarantee the correct replacement of actions. We first
give a formal definition in the one-to-one case (m = 1
and n = 1), which we extend to the one-to-many
(m = 1 and n ≥ 1) and many-to-many (m ≥ 1 and
n ≥ 1) cases. Note that we do not distinguish between
the aggregation (⊕) and disjunction (⊔) constructors
when computing the interface mapping as they both
represent compositions of concepts. The distinction
is however maintained at the ontological level, and
also for data translations: in the case of disjunction
E

.
= C ⊔D, the translation consists in producing an

instance of E by assigning to it either an instance of C
or an instance of D. While in the case of aggregation
E

.
= C⊕D, an instance of E is produced by combining

its parts, i.e. both C and D instances, in the appropriate
way.

Definition 2 (One-to-One Mapping): A required ac-
tion α = 〈a, Ia, Oa〉 ∈ I1 maps to a provided action

β =
〈

b, Ib, Ob

〉

∈ I2 noted α
1−1
7−! β, iff:

1) b ⊑ a 2) Ia ⊑ Ib 3) Ia ⊔Ob ⊑ Oa

The idea behind this mapping is that a required
action can be achieved using a provided one if the
former supplies the required input data while the latter
provides the necessary output data, and the required
operation is less demanding than the provided one.
This coincides with the Liskov Substitution Principle [36]
where ontological subsumption can be used in ways
similar to subtyping in object-oriented systems.

As a result, we generate the mapping process M1−1

that synchronises with each component by executing
its dual action in order to let the two components
progress as depicted in Figure 5. The states of the map-
ping process are labelled so as to reflect the progress
of the components; each label is the concatenation
of the label of the state of Component 1 and that of
Component 2. M1−1 performs β (trace 0.0′ ! 0.1′) so
as to synchronise with α (trace 0.1′ ! 1.1′). Hence, the

one-to-one mapping process corresponding to α
1−1
7−! β

is defined as follows: M1−1(α, β) = (β ! α ! END).

Component 1

Component 2

Matching Process

M1−1(α, β)

α

β

αβ
1.100.100.00

00 10

0 1

Fig. 5. One-to-one mapping process: M1−1(α, β)
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Let us consider the 〈ReadFile, {SourceURI}, {File}〉
action required by WDAV and the
〈DownloadDocument, {SourceURI}, {Document}〉 action
provided by the Google Drive service, which
we denote GDrive. We can verify from the
file management ontology in Figure 2 that:
1) DownloadDocument ⊑ ReadFile, 2) SourceURI ⊑
SourceURI since subsumption is reflexive, and
3) Document ⊑ File. As a result, we generate a
corresponding mapping process M1−1(ReadFile,
DownloadDocument)=(DownloadDocument ! ReadFile

! END)., which requires DownloadDocument and
provides ReadFile. Therefore, it needs to: (i) receive
SourceURI once ReadFile is invoked, (ii) invoke
DownloadDocument using SourceURI as input data and
receive the associated Document, and (iii) construct
and return File (since Document ⊑ File) as a result of
the invocation of ReadFile.

Definition 3 (One-to-Many Mapping): A required
action α = 〈a, Ia, Oa〉 ∈ I1 maps to a sequence
of provided actions X2 =

〈

β1, β2, . . . , βn

〉

where

βi=1..n=
〈

bi, Ibi , Obi

〉

∈ I2, noted α
1−n
7−!

〈

β1, . . . , βn
〉

, iff:

1)
n
⊔

i=1

bi ⊑ a

2) Ia ⊑ Ib1

3) Ia
⊔

(

i−1
⊔

j=1

Obj

)

⊑ Ibi

4) Ia
⊔

(

n
⊔

j=1

Obj

)

⊑ Oa

The first condition states that the operation a can be
appropriately performed using bi operations, that is,
the disjunction of all bi is subsumed by a. The second
ensures that the sequence of provided actions can be
initiated since the input data of the first action Ib1 can
be obtained from the input data of the required action
Ia. The third condition specifies that the input data of
each action can be obtained from the data previously
received either as input from α or as output from the
preceding βj (j < i). The fourth condition guarantees
that the required output data Oa can be obtained from
the set of data accumulated during the execution of
all the provided actions.

As a result, we generate the mapping process
M1−n(α,X2), depicted in Figure 6, which performs all
the provided actions (trace 0.0′ ! ·· · ! 0.n′) so as to
synchronise with the action α (trace 0.n′ ! 1.n′). The

mapping process corresponding to α
1−n
7−!

〈

β1, . . . , βn
〉

is: M1−n(α,X2) = (β1 ! β2 ! ·· · ! βn ! α! END).

Component 1

Component 2

Matching Process

β1 βn

βnβ1

β2

β2

…

…

α

α

M1−n(α, X2)
0.n0 1.n0

00 10 n0

0 1

0.00 0.10

Fig. 6. One-to-many mapping process: M1−n(α,X2)

Let us consider the 〈MoveFile,{SourceURI,
DestinationURI}, {Acknowledgment}〉 action
required by WDAV and the three actions:
(i) 〈DownloadDocument,{SourceURI},{Document}〉,
(ii) 〈UploadDocument,{Metadata,Content,DestinationURI},
{Acknowledgment}〉, and (iii) 〈DeleteDocument,
{SourceURI}, {Acknowledgment}〉 provided by GDrive.
First, the condition on the semantics of the
operations is verified, that is, DownloadDocument ⊕
UploadDocument ⊕ DeleteDocument ⊑ MoveFile. We
recall, as stated at the beginning of this section, that
we do not distinguish between the aggregation (⊕)
and disjunction (⊔) constructors when computing
the interface mapping. Then, both DownloadDocument

and DeleteDocument can be performed as they only
expect SourceURI as input, which is produced by
MoveFile. UploadDocument requires some input data,
which can only be provided by DownloadDocument

since Document =Metadata⊕Content (see Figure 2) and
thus must be executed after DownloadDocument. Hence,
we can have the following mapping:

MoveFile 7! 〈DownloadDocument, UploadDocument,
DeleteDocument 〉

We can generate a corresponding mapping process
M1−n(MoveFile, 〈DownloadDocument, UploadDocument,

DeleteDocument〉), which: (i) receives SourceURI and
DestinationURI as a result of the invocation of MoveFile,
(ii) invokes DownloadDocument with SourceURI as
input data, and receives the corresponding Document,
(iii) invokes UploadDocument using Metadata and
Content (since Document = Metadata ⊕ Content) and
DestinationURI, which was previously received, (iv)
invokes DeleteDocument using SourceURI and receives
the associated Acknowledgment, and (iiv) sends back
the Acknowledgment expected by MoveFile.

Since there is no data dependency between
UploadDocument and DeleteDocument, there exists an-
other mapping using these same actions in a different
order: MoveFile 7! 〈DownloadDocument, DeleteDocument,
UploadDocument 〉

Definition 4 (Many-to-Many Mapping): A sequence
of required actions X1 = 〈α1,α2, . . . ,αm〉 where
αi=1..m=〈ai, Iai

,Oai
〉 ∈ I1 maps to a sequence

of provided actions X2=
〈

β1, β2, . . . , βn
〉

where
βj=1..n=

〈

bj, Ibj ,Obj

〉

∈ I2, noted 〈α1, . . . ,αl, . . . ,αm〉
m−n
7−!

〈

β1, . . . , βn
〉

, iff:

1)
n
⊔

j=1

bj ⊑
m
⊔

i=1

ai

2)
l
⊔

i=1

Iai
⊑ Ib1

3)

(

l
⊔

j=1

Iaj

)

⊔

(

i−1
⊔

h=1

Obh

)

⊑ Ibi

4) Oah
= ∅ for 1 6 h 6 l− 1 (where l ∈ [1,m+1])

5)

(

h
⊔

i=1

Iai

)

⊔

(

n
⊔

k=1

Obk

)

⊑ Oah
for l 6 h 6m
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The first condition states that the ai operations
can be performed using bj operations. The second
condition states that the first provided action can be
performed since the necessary input data Ib1 can be
obtained from the data previously received. The third
conditions ensures that the input data of each action
can be obtained from the received input data and
the output data of the preceding actions. The fourth
condition states that we can cache the input data of
the required actions and allow them to progress if they
do not necessitate any output data. We recall that a
required action represents a client-side invocation of
an operation by sending the appropriate input data
and receiving the corresponding output data, while
a provided action uses the inputs and produces the
corresponding output. Let l be the index of the first
required action that necessitates some output data.
l = 1 means that the first required action necessitates
some output data while l = m+ 1 means that none
of the required actions necessitates output data. Since
the first l − 1 actions do not necessitate any output
data, they can be executed before the provided actions.
Finally, the last condition states that the output data of
the remaining required actions, i.e. from l to m, can be
obtained from the previous input data together with
the output data of the provided actions.

Consequently, we generate the mapping process
Mm−n(X1,X2) depicted in Figure 7. Mm−n(X1,X2) first
synchronises with the l − 1 first required actions
since no output data is necessary for them to be
executed (trace 0.0′ ! ·· · ! (l− 1).1′). But only after
performing all provided actions (trace (l − 1).1′ !
·· · ! (l − 1).n′), can Mm−n(X1,X2) synchronise with
the subsequent required actions, from l to m (trace
(l − 1).n′ ! ·· · ! m.n′) since the output data nec-
essary for their achievement are produced by the
provided actions. The mapping process corresponding

to 〈α1, . . . ,αl, . . . ,αm〉
m−n
7−!

〈

β1, . . . , βn
〉

is as follows:
Mm−n(X1,X2) = (α1 ! ·· · ! αl−1 ! β1 ! ·· · !
βn ! αl ! αl+1 · · · ! αm ! END).

Component 1

Component 2

Matching Process

β1 βn

βnβ1

β2

β2

…

…

00 10 n0

0 1

Mm−n(X1, X2)

… …l-1 m

0.00 1.00 (l-1).10 … …(l-1).n0 m.n0(l-1).00

α1 α2 αl−1 αl αm

α1
αl−1 αl αmα2

Fig. 7. Many-to-many mapping process: Mm−n(X1,X2)

To sum up, a sequence of required actions can
be mapped to a sequence of provided actions if the
following conditions are verified: (i) the functionality
offered by the provided actions covers that of the
required actions, (ii) the input data of each provided
action can be obtained before its execution, and (iii) the
output data of each required action can be obtained
before its execution. Even though these mappings do
not cover every possible mismatch—this would mean

that we are able to prove computational equivalence—
they cover a large enough set of mismatches with
respect to practical and real case studies and other
automated approaches.

3.2 Interface Mapping using Constraint
Programming

Mapping interface I1 to interface I2 consists in
searching, among all the possible pairs of sequences
of required actions of I1 and sequences of pro-
vided actions of I2, those which verify the condi-
tions of the mapping relation specified in the pre-
vious section. Furthermore, each pair of sequences
of actions is minimal, that is, any other pair ver-
ifying the mapping relation would include a sub-
sequence of the required or provided actions. As
interface mapping is an NP-complete problem (see
the proof at http://www-roc.inria.fr/arles/
software/mics/complexity.pdf and in [37]), we
use Constraint Programming (CP) to deal with it
effectively. Indeed, CP has proved very efficient when
dealing with combinatorial problems [35].

Many arithmetical and logical operators are man-
aged by existing CP solvers. However, although there
are some attempts to integrate ontologies with CP [38],
none supports ontology-related operators such as
subsumption or disjunction of concepts. In order to use
CP to compute interface mapping, we need to enable
ontology reasoning within CP solvers. Therefore, we
propose to represent the ontological relations we are
interested in using arithmetic operators supported by
existing solvers. In particular, we devise an approach
to associate a unique code to each ontological con-
cept such that disjunction and subsumption relations
amount to boolean operations.

In the following, we introduce CP. Then, we formu-
late the interface mapping as a constraint satisfaction
problem that can be solved efficiently using CP.

3.2.1 Constraint Programming in a Nutshell

Constraint programming is the study of combinatorial
problems by stating constraints (conditions, qualities)
which must be satisfied by the solution(s) [35]. These
problems are defined as a constraint satisfaction problem
and modelled as a triple (X,D,C):

• Variables: X = {x1, x2, . . . , xn} is the set of variables
of the problem.

• Domains: D is a function which associates to each
variable xi its domain D(xi), i.e. the set of possible
values that can be assigned to xi.

• Constraints: C = {C1,C2, . . . ,Cm} is the set of con-
straints. A constraint Cj is a mathematical relation
defined over a subset xj = {xj1, x

j
2, . . . , x

j

nj} ⊆X of
variables which restricts their possible values. Con-
straints are used to determine unfeasible values
and delete them from the domains of variables.
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Solving a constraint satisfaction problem consists
in finding the tuple (or tuples) v = (v1, . . . , vn) where
vi ∈D(xi) and such that all the constraints are satisfied.
Thus, CP uses constraints to state the problem declar-
atively without specifying a computational procedure
to enforce them. The latter task is carried out by a
solver. The constraint solver implements intelligent
search algorithms such as backtracking and branch
and bound which are exponential in time in the worst
case but may be very efficient in practice. The CP
solver also exploits the arithmetic properties of the
operators used to express the constraints to quickly
check, discredit partial solutions, and prune the search
space substantially.

We represent interface mapping Map (I1,I2) as a
constraint satisfaction problem as follows:

• Variables: X = {X1,X2} where X1 represents
a sequence of required actions of I1 and X2

represents a sequence of provided actions of I2.

• Domains: D(X1)=
|I1|
⋃

k=1

Pk(I1) and D(X2)=
|I2|
⋃

k=1

Pk(I2)

where Pk(S) denotes the set of k-permutations of
the elements of the set S. Indeed, X1 is a sequence
of actions (hence the permutations) of I1 of length
k varying between 1 and the cardinality of I1,
i.e. 1 < k < |I1|. Similarly for X2. Note that to
keep the domain finite, each action can appear in
the sequence at most once.

• Constraints: the constraints are defined by the
conditions of the mapping relation (7!) speci-
fied in Section 3.1. As for the minimality of
the mapping, we eliminate redundant solutions
using the subsequence relation, which is a partial
order relation defined on the domain of each
variable. Let us consider two sequences of actions
A =〈a1, a2, . . . , am〉 and B =〈b1, b2, . . . , bn〉; A is a
subsequence of B iff m < n and ∀k ∈ [1..m],
ak = bk. Exploiting this partial order relation for
the branch and bound algorithm used to solve
the constraint satisfaction problem allows us to
keep only the minimal mappings that verify the
rest of the constraints.

The solutions of the constraint satisfaction problem
are the smallest, according to the subsequence relation,
pairs of action sequences (α,β) ∈D(X1)×D(X2) such
that the required actions of α can safely be achieved
using the provided actions of β.

3.2.2 Representing Ontological Relations

Our goal is to leverage CP solvers to perform interface
mapping since none of existing CP solvers deals with
ontology-based operators. To this end, we define a bit
vector encoding of the ontology which is correct and
complete regarding the subsumption and disjunction
axioms. Correctness means that if the encoding asserts
that a concept subsumes another concept or that a concept is
a disjunction of other concepts then these relations can be

verified in the ontology. Completeness means that if the
ontology states that a concept subsumes another one
or that a concept is a disjunction of other concepts then
this statement can also be made using the encoding.

Algorithm 1 EncodingOntology

Require: Classified ontology O
Ensure: Code[]: maps each concept C ∈ O to a bit vector
1: for all C ∈ Concepts(O) do
2: Set[C]← {NewElement()}
3: end for
4: for all C ∈ Concepts(O) do
5: for all Des ∈ Descendants(C) do
6: Set [C]← Set [C] ∪ Set [Des]
7: end for
8: end for
9: disjunctionAxiomList = Sort(DisjunctionAxioms(O))

10: for all A =
n
⊔

i=1

Ai ∈ disjunctionAxiomList do

11: D ← Set [A] \
n
⋃

i=1

Set [Ai]

12: for all d ∈ D do
13: Set [A]← Set [A] \ {d}
14: for all Ai do
15: di ← {NewElement()}
16: Set [Ai]← Set [Ai] ∪ {di}
17: for all Asc ∈ Ascendants(Ai) do
18: Set [Asc]← Set [Asc] ∪ di
19: end for
20: end for
21: for all Des ∈ Descendants(A) | d ∈ Set [Des] do

22: Set [Des]← (Set [Des] \ {d})
⋃

(

n
⋃

i=1

di

)

23: end for
24: end for
25: end for
26: Code[]← SetsToBitVectors(Set[])
27: return Code[]

The algorithm for encoding an ontology (Algo-
rithm 1) takes the classified ontology as its input,
i.e. an ontology that also includes inferred axioms,
and returns a map that associates each concept with
a bit vector. We first use sets to encode the ontology
concepts such that subsumption coincides with set
inclusion and disjunction with set union. Then, we
represent the sets using bit vectors whose size is the
number of elements of all sets. Each bit is set to 1 if the
corresponding element belongs to the set and to 0 otherwise.
The type of elements of the sets does not matter, they are
just temporary objects used to perform the encoding.

The first step of the encoding algorithm is to assign
a unique element to the set that represents each
concept (Lines 1−3). Then, we augment the set of each
concept with the elements of the sets associated with
the concepts it subsumes, i.e. its descendants (Lines
4−8) since subsumption essentially comes down to set
inclusion of the instances of concepts.

We then move to disjunction axioms. We sort the
axioms so that each element is made up of simple
concepts or preceding concepts in the list (Line 9). For

each disjunction axiom A =
n
⊔

i=1

Ai, we consider the set

D of elements that belong to the set representing A

but which are not included in any of the sets of its
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TextDocument
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Document
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File
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TextDocument
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Step 1: Considering  the hierarchy Step 2: Considering disjunction Step 3: Encoding into bit vectors

Fig. 8. Illustrating ontology encoding on an extract of the file ontology

composing classes Ai (Line 11). These elements are
either the distinguishing element of A, or put into A’s
set by one of its sub-concepts during the previous step.
The latter case represents the case where a concept
is subsumed by the disjunction A but not by any of
its individual concepts. To preserve the subsumption,
each element d ∈ D is divided into n elements, each of
which is added to one of the composing classes Ai=1..n.
Hence, we first remove d from A (Line 13). Then, we
create a new element di and add it to Ai’s set as well
as to the sets of its subsuming concepts, which include
A (Lines 14−20). We also replace the element d in A’s
descendants by the new elements it was divided into
(Lines 21−23). Finally, we encode the sets using bit
vectors where each bit indicates whether or not an
element belongs to the set (Line 26).

The size of the bit vector depends on the size of
the ontology together with the number of disjunction
axioms it includes. Let m be the number of concepts in
the ontology. The first step of the encoding algorithm
is to assign a unique element to the set that represents
each concept. Hence, each element associated with
a concept C will be converted into a bit in the bit
vector representing the concept Code[C]. Consequently,
we will have an m-bit vector. Then, we augment
the set of each concept with the elements of its
descendants, which does not involve adding new
elements. As a result, we still have an m-bit vector.
Let k be the number of conjunction axioms. For each

axiom A =
n
⊔

i=1

Ai, we split the element belonging to

A but not to any of its composing concepts Ai, if any,
into a maximum of n objects, hence adding n bits.
Consequently, the number of bits would be m+ k ∗ n′

where n′ is the degree of the disjunction axioms, i.e. the
maximum of all n.

As a result, subsumption can be performed using
bitwise and as follows:

C ⊑D ⇐⇒ Code[C]∧Code[D] = Code[C]

Disjunction is performed using bitwise or:

A =
n
⊔

i=1

Ai ⇐⇒ Code[A] =
n
∨

i=1

Code[Ai],

The proof of the correctness and completeness of this
encoding can be found at http://www-roc.inria.
fr/arles/software/mics/encodingProof.pdf

and also in [37].

Let us consider the extract of the file management
ontology depicted in Figure 8. File subsumes Document

which is defined as the disjunction of Presentation,
SpreadSheet, and TextDocument. During the first step, we
associate an element, which we represent as a natural
number, to each concept and put it into its ascendants.
The element ‘1’ represents the bottom concept ⊥
subsumed by all concepts. Then, we consider the
Document = Presentation ⊔ SpreadSheet ⊔ TextDocument

disjunction. The ‘5’ element belongs to Document but
not to any of its composing concepts, so we split it
into three elements (‘51’, ‘52’, and ‘53’) and assign each
of them to a composing element in step 2. In step 3,
we encode sets as bit vectors. For example, Presentation
includes 1 at the position of ‘1’, ‘2’, and ‘51’ elements;
and 0 at all other positions. The bitwise AND between
the codes of File and Document corresponds to the code
of Document (11111111 ∧ 01111111 = 01111111), which
is equivalent to stating that File subsumes Document.
The bitwise OR between the codes of Presentation,
SpreadSheet, and TextDocument is 01111111, which corre-
sponds to the code of Document. Note that this extract
of the file ontology contains five concepts (m = 5) and
one disjunction axiom (k = 1) with three composing
concepts (n = n′ = 3), as a result the codes of the
concepts are 8-bit vectors.

The encoded ontology is used by the CP
solver when computing the interface mapping
in order to check if a constraint is verified.
For example, to map 〈ReadFile,{SourceURI},{File}〉
from the interface of the WebDAV client to
〈DownloadDocument,{SourceURI},{Document}〉 from the
interface of the GoogleDocs service, the CP solver
verifies the subsumption between output data, that is,
File ⊑ Document. This verification is performed using
the code associated with each concept.

4 AUTOMATED SYNTHESIS OF MEDIATORS

To enable functionally-compatible components to in-
teroperate, the mediator must not only solve the differ-
ences between their interfaces but also coordinate their
behaviours in order to ensure their correct interaction.
Hence, given Map (I1,I2) and Map (I2,I1), where every
required action is involved in at least one mapping,
we must either generate a mediator M that composes
the associated mapping processes in order to allow
both components to interact correctly, or determine
that no such mediator exists.
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Definition 5 (Mediated Behavioural Compatibility):
Let P1 and P2 represent the components’ behaviours.
If a mediator M exists, then we say that P1 and
P2 are behaviourally compatible through a mediator M ,
written P1 ↔M P2.

In order to allow the components to interact correctly,
the mediator M must coordinate their behaviours so
as to ensure that the parallel composition P1‖M‖P2

successfully terminates by reaching an END state.
We incrementally build a mediator M by forcing

the two processes P1 and P2 to progress consistently
so that if one requires the sequence of actions X1,
the other process is ready to engage in a sequence of
provided actions X2 to which X1 maps. Given that an
interface mapping guarantees the semantic compatibil-
ity between the actions of the two components, then
the mediator synchronises with both processes and
compensates for the differences between their actions.
This is formally described as follows:

if P1
X1⇒ P ′

1 and ∃ (X1,X2) ∈Map (I1,I2)

such that P2
X2⇒ P ′

2 and P ′
1 ↔M′ P ′

2

then P1 ↔M P2 where M =Mm−n(X1,X2);M
′

Similarly, for the other process:

if P2
X2⇒ P ′

2 and ∃(X2,X1) ∈Map (I2,I1)

such that P1
X1⇒ P ′

1 and P ′
1 ↔M′ P ′

2

then P1 ↔M P2 where M =Mm−n(X2,X1);M
′

The mediator further consumes the extra provided
actions β so as to allow the components to progress
using the process Mβ = (β ! END). Extra provided
actions are actions offered by one component but not
required by the other and need to be invoked to allow
the former component to progress. As long as the input
data necessary to invoke the action has been received,
the mediator can call it and ignore the output produced.
However, we do not handle extra required actions
since it involves offering some functionality, which the
mediator cannot handle by itself. The support of extra
provided actions is as follows:

if P1
β
! P ′

1, and ∃P2 such that P ′
1 ↔M′ P2

then P1 ↔M P2 where M =Mβ ;M ′

if P2
β
! P ′

2, and ∃P1 such that P ′
1 ↔M′ P2

then P1 ↔M P2 where M =Mβ ;M ′

Finally, when both processes terminate, i.e. reach an
END state, then the mediator also terminates:

END ↔END END

Note that the interface mapping is not necessarily
a function since the same sequence of actions can be
mapped to different sequences of actions, which we
considered in the definition of the recursive algorithm
for mediator synthesis (see Algorithm 2).

The algorithm starts by checking the basic configu-
ration where both processes reach their final states. In
this case, the mediator is the END process (Lines 1−3).
Then it considers the states of both processes and for

Algorithm 2 SynthesiseMediator

Require: P1, P2

Ensure: A mediator M
1: if P1 = END and P2 = END then
2: return END

3: end if
4: M ← END

5: for all Pi
a
→ P ′

i=1,2 do
6: mappingList ← FindEligibleMappings(a, Pi, P3−i)
7: while ¬found and mappingList 6= ∅ do
8: Map(X1, X2)← selectMapping(mappingList)

such that Pi
X1⇒ P ′′

i and P3−i
X2⇒ P ′

3−i

9: M ′ ← SynthesiseMediator(P ′′

i , P ′

3−i)
10: if M ′ 6= fail then
11: found← true
12: Mm−n(X1, X2)← GenerateMapProcess(X1, X2)
13: M ′′ ←Mm−n(X1, X2);M ′

14: end if
15: end while

16: if ¬found and ∃β | P3−i
β
→ P ′

3−i then
17: M ′ ←SynthesiseMediator(Pi, P

′

3−i)
18: if M ′ 6= fail then
19: found← true
20: M

β
← GenerateExtraProvidedActionProcess(β)

21: M ′′ ←M
β
;M ′

22: end if
23: end if
24: if ¬found then
25: return fail
26: end if
27: M ←M |M ′′

28: end for
29: return M

each enabled required action a, it calculates the list
of mappings that can be applied, i.e. pairs (X1, X2)
such that X1 starts with a and P2 is ready to engage
in X2 (Line 6). It selects one of them and makes a
recursive call to test whether it can lead to a valid
mediator (Lines 8−9). The selection of the mapping to
use may be motivated by some non-functional property
or the length of the sequences of actions involved
in the mapping but, for instance, let us assume that
the algorithm simply selects the first valid mapping.
The result is that a correct mediator is not unique. If
the selected mapping leads to a valid mediator, the
algorithm generates the associated mapping process
and puts it in sequence with the returned mediator
M ′. Otherwise, it tries another mapping until a valid
mapping is found or all the possible mappings have
been tested (Lines 7−15). In the latter case, it checks
whether the mediator can bypass a provided action
in order to obtain a valid mediator. In this situation,
the algorithm generates the appropriate process Mβ

and puts it in sequence with the generated mediator
(Lines 16−23). If the required action cannot be mapped
to any action given the states of both processes, the
algorithm fails (Lines 24−26). Otherwise, it adds the
new trace to the previously calculated mediator (Line
27). The algorithm explores all the outgoing transitions
labelled with required actions (Lines 5−28) in order
to make sure that for any required actions in which
the components can engage, we are able to find a
composition of mapping processes that will lead the
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components to reach their final states. The algorithm
does not systematically explore transitions labelled
with provided actions because the synchronisation
is triggered by required actions, which initialise the
interaction by sending the input data. The mediator
M hence synthesised guarantees that the parallel
composition P1‖M‖P2 is deadlock free.

Theorem 1: if P1 ↔M P2 then the parallel composi-
tion P1‖M‖P2 is deadlock free.

Proof: By construction, the mediator is synthesised
only if both P1 and P2 reach an END state. In addition,
at any given state s of any of P1 or P2, every
transition associated with a required action α such
that s

α
⇒ s′ is involved in some mapping α 7! β.

Hence, there exists an associated mapping process
Mm−n(α, β) that is ready to engage in the sequence
of dual provided actions, i.e. Mm−n(α, β) is in state

sm such that sm
α
⇒ s′m. Any transition associated with

a provided action β such that s
β
⇒ s′: (i) synchronises

with a mapping process Mm−n(α, β) if there exists a
mapping α 7! β involving it, (ii) is an extra provided

action, in which case it is associated with s
β
⇒ s′ from

the Mβ process, or (iii) is never triggered; we recall that
the synchronisation is triggered by required actions,
which initialise the interaction by sending the input data.
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Fig. 9. Synthesis of an extract of the WDAV -GDrive

mediator

Figure 9 depicts an extract of the LTSs representing
the behaviour of WDAV and GDrive. As a result of
the interface mapping computation, the Lock and
Unlock operations map to SetSharingProperties and
the MoveFile operation maps to DownloadDocument,
UploadDocument, and DeleteDocument while the last
two operations can be executed in any order. When
both processes are at their initial states (0 and 0′

respectively), the only applicable mapping is Lock 7!
SetSharingProperties since PWDAV is only able to per-
form this action. After applying this mapping PWDAV

goes to state 1, PGDrive remains in state 0′, and a partial
trace of the mediator is created from 0.0′ ! 0.0′a !

1.0′a. Then, PWDAV can loop on the MoveFile required ac-
tion, one of the possible mappings is chosen since both
are applicable as PGDrive loops on DownloadDocument,
UploadDocument, and DeleteDocument. PWDAV stays in
state 1, PGDrive also remains in 0′ while the mediator
is augmented with the trace 1.0′a ! 1.0′b ! 1.0′c !
1.0′d ! 1.0′a. PWDAV can also branch on the Unlock

operation, which maps to SetSharingProperties and
results in the trace 1.0′a ! 0.0′b ! 0.0′ in the mediator.
Finally, both processes reach their final states and the
mediator is successfully created.

5 IMPLEMENTATION: THE MICS TOOL

In order to validate our approach, we implemented the
MICS (Mediator Synthesis to Connect Components)
tool to generate the mediator model automatically.
MICS is available at http://www-roc.inria.fr/
arles/software/mics/.
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Fig. 10. Overview of MICS

MICS takes as input the models of two functionally-
compatible components together with a domain ontol-
ogy and produces the mediator that enables them to
interoperate. MICS is made up of three modules.

The ontology encoding module (see Figure 10-❶) first
classifies the ontology using the Pellet reasoner.6 Pellet
is an open-source java library for OWL DL reasoning.
Then, the ontology encoding module uses Algorithm 1
to associate bit vectors to the concepts of this ontology.

The interface mapping module (see Figure 10-❷) com-
putes the mapping between the interfaces of the
components given as input, as described in Section 3.2
using the Choco constraint solver.7 Choco is an
open-source java library for constraint solving and
constraint programming. Choco does not manage
ontology relations such as subsumption but thanks
to the bit vector representation of concepts and the
associated modelling of constraints, we are able to

6. http://clarkparsia.com/pellet/
7. http://choco.emn.fr/
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specify interface mapping as a constraint satisfaction
problem using operators supported by Choco.

The mediator synthesis module (see Figure 10-❸) relies
on the generated mappings and uses Algorithm 2 to
synthesise mediators.

Once the mediator model has been generated, it
needs to be refined and deployed into a concrete
artefact so as to realise the specified mappings and
coordination. This artefact is called an emergent mid-
dleware [34]. The emergent middleware implements
the mediator based on middleware since middleware
provides reusable solutions that facilitate commu-
nication and coordination between components. To
implement mediators, we must bridge the gap between
the application level, which provides the abstraction
necessary to reason about the meaning of the actions
used by the components and analysing components’
behaviours formally, and the middleware-level, which
provides the techniques necessary to implement these
mediators. The focus of this paper is on the synthesis
of mediators at the application level rather than on
their implementation at the middleware level. We refer
the interested reader to [39] that formalises the relation
between the application and middleware levels and
to [37] for further details about the implementation
of mediators.

Figure 11 depicts an example of an emergent mid-
dleware. The emergent middleware: (i) intercepts the
input messages, (ii) parses them in order to abstract
from the communication details and represent them in
terms of actions as expected by the mediator, (iii) per-
forms the necessary data transformations, and (iv) uses
the transformed data to construct an output message
in the format expected by the interacting component.

Steps i), ii) and iv) are performed using middleware-
specific parsers and composers to instantiate the data
structures expected by each component and their
delivery according to the format expected by the
component. We can either use existing middleware
libraries to perform this task or rely on an interpre-
tation framework such as Starlink [8] to generate
them at runtime. In the case of the interoperable
file management example, we deployed the mediator
over an Apache Tomcat container.8 The container
intercepts and filters out WebDAV messages. To parse
the WebDAV messages, we used Milton API.9

Message
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Composers

Message
Parsers/

Composers

?β1!ρ1

?ρ2 !β2
?δ2

!α2

!δ1
?α1

?λ1

t1

t2 t3

t4

Mediator Interpreter

Emergent middleware

Fig. 11. Emergent middleware

8. http://tomcat.apache.org/
9. http://milton.ettrema.com/

Step iii) needs further computation. Even though
subsumption guarantees the semantic compatibility
between concepts, we still need to specify the necessary
data transformations in order for the mediator to
deal with the syntactic difference between the in-
put/output data. Data mapping is a large and complex
problem [40]. Still, we should distinguish two cases.
In the case of simple types only, the translation is
quite straightforward and often consists in simple cast
operations. However, in most cases we need to deal
with complex data types, e.g. mapping two elaborate
XML Schemas. We rely on existing approaches for data
mapping that devise different techniques to infer the
transformations needed to translate from one XML
Schema to another. We refer the interested reader to
the complete survey by Shvaiko and Euzenat [40] for
a thorough survey and analysis of the approaches that
can be applied with this goal in mind.

6 EXPERIMENTS

A solution for mediator synthesis can only be useful if
it can be applied to various real-world cases. Section 4
focuses on the theoretical aspect of the automated
synthesis of mediators by proving that the synthesised
mediator guarantees that the components reach their
terminating states and that the composed system
is deadlock-free. This section presents the practical
aspect of the approach by reporting on the results of
experiments using MICS to generate mediators for real-
world case studies. More specifically, the case studies
serve to justify the following claims:

• we automatically generate mediators that not only
translate one action required by one component
into an action provided by the other, but also
sequences of actions between components,

• the synthesised mediators introduce an acceptable
overhead, even though optimising the perfor-
mance of mediators is not our main focus, and

• we can synthesise mediators at runtime provided
adequate domain knowledge.

Case Studies Highlight

Instant Messaging one-to-one mapping

File Management one-to-many mapping

Event Management one-to-many mapping & loops

GMES one-to-many mapping & extra action & runtime

TABLE 3. Summary of the case studies

Table 3 summarises the type of mappings necessary
to deal with to enable components to interoperate in
each case study. We begin with the instant messaging
case study to illustrate one-to-one mappings. We then
move to the file management case study, which we
previously used to illustrate our approach, to highlight
one-to-many mappings. The third case relates to
interoperability between event management systems,
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which are concerned with the organisation of events
like conferences, seminars, concerts. This case study
illustrates the case of loops, i.e. when an action is
achieved by executing another action multiple times.
Finally, we present the GMES (Global Monitoring of
Environment and Security10) case to illustrate the need
for mediation at runtime between components that
are dynamically discovered and whose interaction
is spontaneous.

In the following sections (Section 6.1 to 6.4), we
provide a description of each case focusing on the
performance of the synthesised mediator. Details about
the ontology and the behaviours of the components can
be found elsewhere [37]. The aim of these case studies
is to highlight the type of mappings supported by
the approach and show that the mediator introduces
an acceptable overhead. In Section 6.5, we measure
the time necessary to perform each step of the synthesis of
mediators for each case study. The aim is to evaluate the
contribution of each step in the overall synthesis time.

6.1 Instant Messaging: One-to-One Mapping

Description. The evolution of instant messaging (IM)
applications provides an insight into today’s commu-
nicating applications where different protocols and
competing standards co-exist. Popular IM applications
include Windows Live Messenger, which is based
on MSNP, Yahoo! Messenger which is based on the
YMSG protocol, and Google Talk which is based on the
Extensible Messaging and Presence Protocol (XMPP)
standard protocol.11 These IM applications offer similar
functionalities but a user of MSN Messenger would
be unable to exchange instant messages with a user
of Google Talk. Indeed, even though XMPP is a
W3C standard, many IM systems continue to use
proprietary protocols. Thus, users have to maintain
multiple accounts and applications in order to interact
with one another. Our aim is to let users install their
favourite IM applications and synthesise a mediator
that performs the necessary translations to make
different IM applications interoperable.

In [41], we focus on the role of ontologies to
support one-to-one mapping between heterogeneous
IM applications. We started by defining an IM on-
tology and used it to annotate the interfaces of the
IM components. Then, we used the actions of each
component’s interface to describe its behaviour. The
mediator synthesised based on these models simply
performs one-to-one mappings between the interfaces
of the IM applications. We deployed the synthesised
mediator on the Starlink framework [8]
Performance. To evaluate the performance of the
mediator, we measured the time for exchanging a
100-character message between pairs of IM appli-
cations considering combinations of MSNP, YMSG,

10. http://www.gmes.info/
11. http://www.xmpp.org/

and XMPP. The message exchange consists in the
first IM application sending a message and the other
replying by sending back the message unchanged. We
use the notation A/B to designate message exchange
between an application using protocol A to send the
message and an application using protocol B is to
send back the message. We repeated the experiments
50 times and report the average time in Figure 12.
The non-mediated interactions include message ex-
change between applications using the same protocol,
MSNP/MSNP, YMSG/YMSG, and XMPP/YMSG. In
addition, applications using MSNP and YMSG are
able to interact using a proprietary gateway.12 Hence,
we also represent non-mediated interactions for the
MSNP/YMSG case, as well as YMSG/MSNP case since
IM is a peer-to-peer application. The performance
of the mediator compared to interactions between
non-mediated clients depends on the type of the IM
protocol used: while the overhead is negligible for
the XML-based XMPP system, it is significant in the
case of the binary YMSG protocol. It is also worth
noticing that even the gateway-based solution used
in the case of MSNP/YMSG interoperation introduces
an overhead of 50% compared to the non-mediated
MSN interactions and more compared to the YMSG
interactions. Yet the time for exchanging a message
remains less than 1s. Guidelines for response time in
interactive applications specify that 1s is the limit to
keep the user’s flow of thought seamless [42]. Hence,
we can state that the mediator introduces an acceptable
overhead.

MSNP/MSNP 

MSNP/YMSG  

MSNP/XMPP  
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Fig. 12. Time for mediated and non-mediated interac-

tions between IM components

6.2 File Management: One-to-Many Mapping

We used the file management case to illustrate our
approach throughout this paper, in this section we
evaluate the performance of the synthesised mediator.
Performance. We measured the time to perform a
simple conversation, which includes authenticating,

12. http://www.microsoft.com/presspass/press/2006/jul06/
07-12iminteroppr.mspx
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moving a file from one folder to another, and listing the
content of the two folders. We used a 4KB file to lessen
the network delay. We repeated each conversation
50 times and report the average execution time in
Figure 13. We use the notation A/B to designate
a conversation between a client A an a service B.
In the case of the WebDAV client interacting with
the Google Drive service (WebDAV/GoogleDrive),
the overhead is negligible compared to the Google
Drive interactions, while it is 75% more than the
WebDAV native interactions. This is mainly due to the
network communication time since the former requires
3 operations (i.e. 6 messages) while the latter requires
only one operation (i.e. 2 messages). In the case of
a Google Drive client interacting with the WebDAV
service, the mediator introduces an 18% time overhead
compared to native Google Drive interactions while it
is twice the time compared to non-mediated WebDAV
interactions. This time increase is due to the fact that
the Google Drive actions are translated on a one-to-
one basis (e.g. a DownloadDocument to a ReadFile and
UploadDocument to WriteFile) instead of being merged
into a single MoveFile operation. Such an optimisation
is however hard to predict as the behaviour of the
Google Drive client specifies that these three operations
can be performed in any order.
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Fig. 13. Time or mediated and non-mediated interac-

tions between WebDAV and Google Drive

6.3 Event Management: One-to-Many Mapping
and Loops

Description. Event organisers usually rely on existing
and specialised event management systems to prepare
their events as they generally offer an economical and
better quality solution compared to building their own
system. In order to use an event management service,
an organiser has to include within its application a
client able to interact with the service provider. De-
pending on the event they are in charge of, organisers
may have to integrate with multiple event manage-
ment providers. However, event management systems
often exhibit different interfaces and behaviours.

We investigated this case study with an industrial
partner Ambientic.13 Ambientic provides a suite of

13. http://www.ambientic.com/en/

mobile application to facilitate the organisation of
events and improve collaboration between the different
stockholders. Ambientic needs solutions to interface
with multiple existing event management services
as required by its customers. However, developing
a client for each event management service rapidly
becomes fastidious. Our solution intends to simplify
and automate the support of multiple services.

We considered two event management systems:
Amiando14 and RegOnline.15 We focused on the sce-
nario where a customer searches for events that include
some keywords in their title, and then examines the
information about the events found. In Amiando,
customers have to send an EventFind request with
the keywords to search for. The EventFind response
includes a list of event identifiers. To get the infor-
mation about an event, customers must invoke the
EventRead operation with the event identifier as an
input parameter. In RegOnline, customers have only
to send a GetEvents request including the keywords
to search for. As a result, the client obtains the list
of events verifying the search criteria, each of which
associated with the corresponding information.

We built upon the eBiquity event ontology16, which
defines the vocabulary for describing and relating
information elements that are commonly used in
event management systems. We used the ontology
to annotate the interfaces of the components. Then
we used the actions of the components’ interfaces
to describe their behaviours. The performance of the
mediator synthesised based on the resulting models
are described in the following.

0  200  400  600  800  1000  1200  1400  1600  1800  2000 

Amiando/RegOnline 

RegOnline/Amiando 

Amiando/Amiando 

RegOnline/RegOnline 

Time to perform a conversa0on (ms) 

Non‐mediated  Mediated 

Fig. 14. Time for mediated and non-mediated interac-

tions between Amiando and RegOnline

Performance. To evaluate the performance of the
mediator, we performed a simple conversation, which
consists of a search based on a substring of the
title of events, then getting a list of 10 events with
the corresponding description for each event. We
repeated each conversation 30 times for each possi-
ble pair of Amiando and RegOnline and report the
average execution time in Figure 14. Even without

14. http://developers.amiando.com/
15. http://developer.regonline.com/
16. http://ebiquity.umbc.edu/ontology/event.owl
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any mediation, Amiando necessitates 3 times more
time than RegOnline. This is due to the fact that it
must send several messages on the network, each of
which contains the information of one event whereas
in RegOnline, the description of all events is sent
in a single message. This is reflected in the case of
RegOnline client interacting with the Amiando service
as the mediator has to make many requests in order
to create the message required by the client. One way
to remedy this overhead is to send requests in parallel,
but the synthesised mediator is not equipped for that
and performs the translations only in sequence. For
an Amiando client, using the RegOnline service is
even more efficient than using its own service. The
reason is that the mediator invokes RegOnline once
and keeps the results; hence when the Amiando client
sends an EventRead the response is ready and no extra
processing is necessary.

6.4 GMES: Runtime Mediation

Description. To provide insight into the benefits of
using the synthesis of mediators to support interoper-
ability at runtime, we now present the experiment we
conducted in the context of the GMES initiative, which
was used as a demonstrator for the EU CONNECT

project [43]. GMES is the European Programme for
establishing a European capacity for Earth Observation.
In particular, a special interest is given to the support
of emergency situations (e.g. forest fire) across different
European countries. Indeed, each country defines an
emergency management system that encompasses
multiple components that are autonomous as well as
designed and implemented independently. Nonethe-
less, there are incentives for these components to be
composed and collaborate in emergency situations.
GMES makes a strong case of the need for solutions
to enable multiple, and most likely heterogeneous,
components to interoperate in order to perform the
different tasks necessary for decision making. These
tasks include collecting weather information, locating
the agents involved (e.g. firemen), and monitoring the
environment.
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Fig. 15. Illustrating interoperability in GMES

Figure 15 depicts the case where the emergency
system of Country 1 is composed of a Command and

Control centre (C2) which takes the necessary decisions
for managing the crisis based on the information
about the weather provided by the Weather Service
component, the positions of the various agents in
field given by Positioning-A, and the monitoring of the
environment using UGV (Unmanned Ground Vehicle).
Country 2 assists Country 1 by supplying components
that provide C2 with extra information. These com-
ponents are Weather Station, Positioning-B, and UAV
(Unmanned Aerial Vehicle). However, C2 cannot use
these components directly. Indeed, Weather Station
provides specific information such as temperature
or humidity whereas Weather Service, which is used
by C2, returns all of this information using a single
operation. The UGV requires the client to login, then
it can explore the environment by moving forward or
backward as well as turning while UAV is required
to takeoff prior to performing any of these operations
and to land before logging out. Both UGV and UAV
are managed through SOAP-based controllers, hence
the components’ models do not include the low-level
information for managing the robots. Note that GMES
further illustrates differences between the components
at the middleware level, e.g. SOAP and CORBA or
AMQP. These differences must be handled during the
implementation of the synthesised mediator. We refer
the interested reader to [39] for a formal analysis of
combined application-middleware differences between
components while further details about application of
this analysis in the GMES case can be found in [37].

In this case study, we first built a GMES ontology
and asked the developers of each system, which were
part of the CONNECT consortium, to use it to annotate
the interface of their components. A discovery enabler,
provided by the CONNECT consortium [44] was used
to locate the components, extract their models, and
trigger the synthesis of mediators for functionally-
compatible components. We evaluate the performance
of the mediator in the following.
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Performance. For each scenario, we measured the
average time necessary to perform a meaningful
conversation. In the weather scenario, the conversation
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Instant Messaging File Management Event Management GMES

Weather Positioning Vehicle

Number of concepts (Disjunctions) 10 (0) 78 (7) 8 (2) 283 (2) 283 (2) 283 (2)

Time for encoding (ms) 300 ms 2502 ms 834 ms 9689 ms 9689 ms 9689 ms

|I1| × |I2| 9 × 5 9 × 7 2 × 2 3 × 4 1 × 1 7 × 11

Time for mapping (ms) 37 ms 672 ms 247 ms 342 ms 20 ms 567 ms

|States(P1)| × |States(P2)| 7 × 4 3 × 2 2 × 3 2 × 2 1 × 1 2 × 4

Time for synthesis (ms) 4 ms 5 ms 5 ms 2 ms <1 ms 7 ms

TABLE 4. Processing time (in milliseconds) for each mediation step

includes authentication, obtaining weather informa-
tion, and logging out. In the positioning scenario, a
single operation is performed in order to locate the
agents. In the vehicle control scenario, conversations
consist in authentication, takeoff (in the case of UAV
only), moving forward, turning left, moving backward,
turning right, landing (in the case of UAV only), and
logging out. We repeated each conversation 50 times
and computed the average duration. The results are
presented in Figure 16. In the weather scenario, the
mediated interaction between C2 and Weather Station
takes three times the time required for C2 to interact
with the associated Weather Service and twice the time
necessary for interaction between Weather Station and
the associated client. This is due to the accumulation of
the communication time in the mediated case since, the
services being quite simple, the time to send/receive
the messages on the network is much bigger that
the processing time. In the positioning scenario, the
overhead introduced by the mediator between C2 and
Positioning-B is almost non-existent. The reason is the
use of a Publish/Subscribe communication paradigm
(AMQP) by Positioning-B. Hence, the implemented
mediator acts as a subscriber, receiving and transform-
ing the data as they are published. As a result, the
mediator can reply to the positioning request sent
by C2 without the need for sending a request to
Positioning-B. In the vehicle scenario, the mediated
conversations between C2 and UAV require three
times the time required for C2 to interact with UGV
and nearly twice the time necessary for interaction
between UAV and the associated client. Similarly
to the weather scenario, the mediated conversations
accumulate the communication time with both systems
without additional overhead due to the extra provided
actions. Yet the time for mediated conversations always
remains less than 1s, i.e. below the response time
recommended for interactive applications to keep the
user’s flow of thought seamless [42].

6.5 Performance of MICS

In the previous section, we showed that automatically
synthesised mediators enable heterogeneous compo-
nents to interoperate while introducing an acceptable

overhead. Let us now consider the time taken to
synthesise mediators. Table 4 summarises the time
to perform each mediation step (ontology encoding,
interface mapping, and behavioural synthesis of me-
diators) for the aforementioned case studies.

First, the time for ontology encoding mainly depends
on the size, i.e. the number of concepts, of the ontology.
The greater the size of the ontology, the more time it
takes to encode it. The number of disjunctions also
influences the encoding, for example the ontology
used for event management includes 8 concepts while
the IM ontology includes 10 concepts but it takes 3
times longer to encode the former as it also includes
disjunction concepts. The time to perform interface
mappings depends mainly on the type of mapping
encountered. In the case of one-to-one mapping, this
time is minimal even with larger interfaces. In fact,
computing one-to-one mappings can be performed
in polynomial time, which the constraint solver is
able to detect and hence calculate the mapping more
efficiently. Finally, the time for the synthesis is marginal
even though theoretically complex. This is because the
behaviour of each component remains simple while
the complexity emerges from the interaction between
components.

Ontology(Encoding( Interface(Mapping( Mediator(Synthesis(

96.57% 

3.41%  0.02% 

GMES‐Weather 

87.98% 

10.85%  1.17% 

Instant Messaging 

78.70% 

21.14% 

0.16% 

File Management 

87.34% 

12.41% 
0.25% 

Event Management 

99.78% 

0.21%  0.01% 

GMES‐Posi8oning 

94.41% 

5.52%  0.07% 

GMES‐Vehicle  

Fig. 17. Comparison of the time necessary for each

mediation step

Figure 17 illustrates the time ratio for each mediation
step. It can be seen that the ontology encoding is
the most time-consuming step. Still, ontologies are
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static entities since they represent knowledge and
understanding of the application domain and are not
specific to the components to be mediated. Hence,
the ontology encoding can be performed beforehand
and used when the need arises. The time ratio for
interface mapping varies greatly between case studies
according to the type of mapping: whether one-to-one
or one-to-many. Finally, the time for generating the
mediator based on the computed mappings represents
only a small part of the overall processing time and
is negligible compared to ontology processing. So,
although the use of ontology allows us to reason
about the semantics of data and operations and hence
increases the level of automation, it comes with a cost.
While standards such as OWL-S [19] or WSMO [20]
amalgamate data semantics and behaviour and use
ontology to represent and reason about both, our
approach only uses ontologies when needed and relies
on appropriate formalisms for behaviour analysis
thereby making the best use of both formalisms. This
separation is even more important when it comes to
keeping the mediator up to date to cope with changes
in the models of the components or the ontology as
discussed in Section 8. When the model of a component
changes, the synthesis of the mediator can be based on
the previous interface mapping and ontology encoding,
which are the most time-consuming phases. When
one of the components changes its interface, then
the synthesis has to resume from interface mapping.
Finally, if the ontology evolves, the synthesis has to
be restarted from the ontology encoding.

7 RELATED WORK

Interoperability has received a great deal of interest
and led to the provision of a multitude of solutions,
both theoretical and practical, albeit primarily oriented
toward design time. In [4], we survey the different
approaches to mediation and give initial thoughts
about an ontology-based approach to the dynamic
synthesis of mediators. In this section, we summarise
various approaches to mediation seen from the perspec-
tive of its underpinning fields: software architecture,
middleware, formal methods and Semantic Web.

Software Architecture. Early work on interoperability
in the software architecture field involved identifying,
classifying and giving generic rules and guidelines to
developers in order to increase reuse and achieve inter-
operability by alleviating architectural mismatches [3].
Spitznagel and Garlan [6] introduce a set of transforma-
tion patterns (e.g. data translation), which a developer
can apply to basic connectors (e.g. RPC) in order to
construct more complex connectors so as to solve
architectural mismatches. Chang et al. [45] propose
to use healing connectors in order to solve integration
problems at runtime by applying healing strategies
defined by the developers of the COTS components at
design time. With a focus on behavioural mediation,

Inverardi and Tivoli [46] define an approach to com-
pute a mediator that composes a set of pre-defined
patterns in order to guarantee that the interaction of
components is deadlock-free. These patterns represent
simple mechanisms that the mediator executes to
solve differences between the interfaces or behaviours
of components. However, the specification of the
patterns to be used is left up to the developers. In
our approach, the differences between the interfaces of
the components are solved using mapping processes,
which are automatically computed given some domain
knowledge modelled using an ontology. It is the role
of the domain expert to define this ontology, which is
related to the application domain rather than to the
software components involved.

Middleware. Middleware stands as a conceptual
paradigm to connect applications effectively despite
heterogeneities in the underlying hardware and soft-
ware. Enterprise Service Buses [47] are open standard,
message-based middleware solution that facilitates the
interactions of disparate distributed applications and
services. ESBs generally include built-in conversion
across standard middleware technologies (e.g. SOAP,
JMS) and provide a set of predefined patterns that can
be used to create customised mediators. However, ESBs
consider the interoperability problem from an enterprise
systems perspective, where interactions are planned and
long-lived and are inappropriate for cases where the
component are only known at runtime. In our ap-
proach, each component is independently specified and
the appropriate mediator is produced automatically,
given some domain knowledge.

Formal Methods. Formal methods focus on the be-
haviour of software systems, which they rigorously
analyse in order to reveal potential execution errors.
Once potential execution errors (a.k.a. mismatches) are
detected, they can be solved either by eliminating the
interactions leading to the errors or by introducing a
mediator that forces the components to coordinate their
behaviours correctly. Existing solutions to synthesise
mediators assume to be given an abstract specification
of the mediator, an adaptation contract [7] or an
interface mapping [14]. Nezhad et al. [48] propose
a semi-automated approach to identity interface map-
ping by comparing the XML schemas describing the
syntax of actions. Other approaches combine XML
matching and behavioural reasoning to synthesise
the mediator [49], [50]. The major difference between
these approaches and ours is the consideration of the
action semantics, which allows us to compute the
correspondance between sequences of actions and to
manage a larger range of mismatches, which cannot
be directly handled considering the syntax of actions
alone. Cavallaro et al. [51] consider the semantics of
data and rely on model checking to identify mapping
scripts between interaction protocols automatically.
However, they propose to align the vocabulary of the
processes beforehand, but many mappings may exist
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and should be considered during mediator synthesis.
Semantic Web. The Semantic Web is an extension of

the Web in which information is given well-defined
meaning, using ontologies, in order to better enable
computers and people to work in cooperation [52].
WSMO [20] defines a description language that inte-
grates ontologies with state machines for representing
Semantic Web Services. It also proposes a framework
to mediate interaction between services on the basis of
pre-defined mediation patterns. However, there is no
guarantee that the composition of these patterns will
be deadlock-free. Vaculı́n et al. [29] devise a mediation
approach for OWL-S processes. They first generate all
requesters paths, then find the appropriate mapping
for each path by simulating the provider process. This
approach does not deal with the case of one action
that can be mapped to different other actions.

Even though a lot of progress has been made both
in understanding and achieving interoperability, it
remains an open issue as we can unfortunately observe
it in our everyday life. We believe that the automation
of mediator synthesis has a great potential and show
how it can be achieved in this paper.

8 FUTURE WORK

In the previous sections, we presented an approach
for the synthesis of correct mediators that enable
heterogeneous components to interoperate. In this
section, we discuss some possible enhancements of
this approach.

Ontology Heterogeneity and Quality. It is crucial to
think about ontologies as a means to interoperability
rather than universality. It is often the case that many
ontologies co-exist and need to be matched with
one another. Ontology matching techniques primarily
exploit knowledge explicitly encoded in the ontology
rather than trying to guess the meaning encoded in the
schemas, as is the case with XML schemas for example.
More specifically, while XML schema matching tech-
niques rely on the use of statistics measures of syntactic
similarity, ontologies deal with axioms and how they
can be put together [40]. In the future, we aim to
extend our model so as to consider the heterogeneity of
the ontologies themselves and reason about interface
mapping under imprecise information. In addition,
empirical studies, which involve users with different
expertise in ontology languages and knowledge of the
application domain, would allow us to evaluate the
effort necessary for developing ontologies as well as
to assess the quality of the resulting ontologies and
theirs potential heterogeneity.

Goal-driven Mediation. In our approach, we postulate
that all actions required by one component must
have a semantically compatible action or sequence
of actions provided by the other component. This
requirement allows us to prove that the mediated
system is free from deadlocks. The user may be
interested in achieving a specific task only and we

can permit interaction between components if we
can mediate their behaviour to perform this specific
task [53]. To paraphrase, instead of generating the
mediator process M such that P1 and P2 reach their
final states and P1‖M‖P2 is deadlock free, we generate
M such that the composition satisfies a given goal
G, i.e. P1‖M‖P2 |= G. However, this general case of
mediator synthesis is known to be computationally
expensive: when G is expressed as an LTL formula, it
may reach complexity of double exponent in the size
of G [54]. Yet there exist subclass of formulas for which
the synthesis problem can be solved in polynomial
time [55]. Further investigation is necessary to evaluate
how relevant these cases are.

Multi-Party Mediators. With the advent of social-
based interactions and the increased emphasis on
collaboration, interoperability between multiple (more
than two) components is gaining momentum. One
simple solution to handle this case is by combining
assembly methods (e.g., [56]) with pairwise mediators.
The former consider the structural constraints and
specify a coarse-grained composition of components
based on their capabilities, while the latter take care
of enforcing this composition despite the interface and
behavioural differences that may exist between each
pair of components. Another direction is to perform the
interface mapping to find the correspondence between
the required actions of one components and sequences
of actions from all other components. These mappings
then should be composed in order to enable each
component to reach its terminating state as well as to
ensure that the system composed of all components is
deadlock-free. While the interface mapping is similar
to the case of two components, further investigation is
necessary to evaluate the complexity of the simultane-
ous exploration of multiple components’ behaviours
while composing the interface mappings.

Coping with Changes. Our ultimate goal is to make the
mediator evolve gracefully as additional knowledge
becomes available, components change, or ontology
evolves. In addition, we may use machine learning
techniques to infer the model of the system. While
machine learning improves automation by inferring
the model of the component from its implementation,
it also induces some inaccuracy that we must handle.
Therefore, we have to keep monitoring the system
and the environment to detect changes and update
the mediator accordingly. In this context, incremental re-
synthesis would be essential to cope with both the dynamic
aspect and partial knowledge about the environment.

9 CONCLUSION

Interoperability is a key challenge in software engineer-
ing whether expressed in terms of the compatibility
of different components and protocols, in terms of
compliance to industry standards or increasingly in
terms of the ability to share and reuse data gathered
from different systems. The possibility of achieving
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interoperability between components without actually
modifying their interfaces or behaviour is desirable
and often necessary in today’s open environments [57].
Mediators promote the seamless interconnection of het-
erogeneous components by performing the necessary
translations between their messages and coordinating
their behaviour. Our core contribution stems from the
principled automated synthesis of mediators. In this
paper, we presented an approach to infer mappings
between component interfaces by reasoning about the
semantics of their data and operations. We then use
these mappings to automatically synthesise a correct-
by-construction mediator. An important aspect of our
approach is the use of ontologies to capture the semantic
knowledge about the communicating components. This
rigorous approach to generating mediators removes
the need to develop ad hoc bridging solutions and
fosters future-proof interoperability. We believe that
this work holds great promise for the future.
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