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Abstract:!Systems!with!multiple!servers!are!common!in!many!areas!and!their!correct!dimensioning!is!in!general!a!difficult!

problem! under! realistic! assumptions! on! the! pattern! of! user! arrivals! and! service! time! distribution.! ! We! present! an!

approximate!solution!for!the!underlying!Ph/Ph/c/N!queueing!model.!!Our!approximation!decomposes!the!solution!of!the!

Ph/Ph/c/N!queue!into!solutions!of!simpler!M/Ph/c/N!and!Ph/M/c/N!queues.!!It!is!conceptually!simple,!easy!to!implement!

and!produces!generally!accurate!results!for!the!mean!number!in!the!system,!as!well!as!the!loss!probability.!!A!significant!

speed!advantage!compared!to!the!numerical!solution!of!the!full!Ph/Ph/c/N!queue!can!be!gained!as!the!number!of!phases!

representing!the!arrival!process!and/or!the!number!of!servers!increases.!
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Réduire la complexité de l’analyse des performances pour les systèmes multi-serveurs 

Résumé#:!!Les!systèmes!avec!serveurs!multiples!sont!fréquents!dans!de!nombreux!domaines!et!leur!dimensionnement!est!

en!général!un!problème!difficile!lorsqu’on!prend!en!compte!des!hypothèses!réalistes!sur!la!forme!des!arrivées!des!clients!

et!de!la!distribution!du!temps!de!service.!Nous!présentons!une!solution!approchée!pour!la!file!associée!!Ph/Ph/c/N.!!Notre!

approximation!recherche!la!solution!de!la!file!Ph/Ph/c/N!en!considérant!les!solutions!de!deux!files!plus!simples!que!sont!

les!files!M/Ph/c/N!et!Ph/M/c/N.!!L’approximation!est!conceptuellement!simple,!facile!à!programmer!et!produit!en!général!

des!résultats!précis!pour!le!nombre!moyen!dans!le!système,!ainsi!que!pour!la!probabilité!de!perte.!!Un!avantage!significatif!

en!vitesse!en!comparaison!de!la!solution!numérique!de!la!file!Ph/Ph/c/N!peut!être!obtenu!lorsque!le!nombre!de!phases!

représentant!le!processus!d’arrivée!et/ou!le!nombre!de!serveurs!s’accroît.!!!
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Mots# clés# :! Systèmes! multi.agents,! file! Ph/Ph/c/N,! Solution! approchée,! Itération! point! fixe,! Probabilité! de! perte.



1 Introduction 

Systems with many (dozens or hundreds) agents (or servers) such as call centers 

[GAN03] are a reality in many areas of our everyday life.  Their correct dimensioning 

so as to achieve an acceptable performance while minimizing their cost is not a trivial 

problem.  In particular, questions such as the amount of improvement (or, conversely, 

degradation) in the expected waiting time of a user, or even the ability of the user to 

join the queue, as one adds (or removes) servers may not be easily answerable.  In-

deed, under realistic assumptions on the pattern of user arrivals and the distribution of 

the service time of a user (e.g. high variability and long-term dependencies), it is not 

possible to obtain acceptable results using simple M/M/c/N or Erlang queueing mod-

els ( c  is the number of servers and N  is the buffer size, i.e. the maximum number of 

users that can be present in the system).   Unfortunately, the more appropriate 

G/G/c/N model does not possess in general a known analytical solution.  Therefore, a 

common approach (besides simulation) is to represent the “general” distributions by 

their phase-type equivalents and solve the resulting Ph/Ph/c/N queueing system nu-

merically.   

 

As long as the number of servers c  and the number of phases in the model remain 

moderate, the balance equations of the Ph/Ph/c/N queue can be solved via direct itera-

tion [TAK76, SEE86, BRA09] or, more efficiently and elegantly, via matrix-

geometric methods [RAM86, LAT93, LAT99, BIN05].  However, as the number of 

servers and phases grows, the number of equations to solve grows combinatorially 

(“dimensionality curse”), effectively precluding the solution of systems with larger 

numbers of servers and phases.   

 
While a few approximations have been proposed in the literature [BOL05], it has 

been shown that even in the simpler case of an M/Ph/c queue, these approximations 
fail to capture the fundamental dependency of performance measures such as the ex-
pected number in the system on higher-order properties of the service time distribu-
tion [GUP10,BEG13].  

 
We propose a simple approximate solution for the Ph/Ph/c/N queueing system 

whose goal is to reduce the complexity of the problem when the distribution of the 
time between arrivals comprises a larger number of phases (say, 4 or more).  In es-
sence, our approach replaces the solution of a Ph/Ph/c/N queue by an iteration be-
tween the solutions of simpler M/Ph/c/N and Ph/M/c/N queues, resulting in potential-
ly significant reduction in overall complexity.  It is a generalization of the 
approximate solution of the Ph/Ph/1 queue presented in [BRA12a]. 

 
Our paper is organized as follows.  In Section 2, we describe in more detail the 

queueing model under consideration and we present our proposed approximate solu-
tion.  Section 3 is devoted to numerical results illustrating the good accuracy of the 
proposed approximation, as well as the considerable expected gain in the speed of the 
solution.  Section 4 concludes this paper. 



2 System analyzed and its approximate solution  

The Ph/Ph/c/N queueing model under consideration is represented in Figure 1.  We 

denote by a  and b  the number of phases used to represent the distributions of the 

time between arrivals and of the service time, respectively.  We also denote by 

p(n), n = 0,...,N  the steady-state probability that there are n  users in the system 

(queued and in service). 

In our method, we iterate between the solution of an M/Ph/c/N and a Ph/M/c/N 

queue.  For the M/Ph/c/N queue, the arrivals are represented by a state-dependent rate 

of arrivals w(n),n ≥ 0 , and the service time distribution is the complete phase-type 

distribution with b  phases.  The solution of this queue produces p(n)  and the condi-

tional rate of service u(n),n ≥1  given that there are n  users in the queue.   This rate 

of service is used to solve the Ph/M/c/N queue with the complete phase-type distribu-

tion of the time between arrivals with a  phases.  The solution of this queue produces 

p(n) , as well as the conditional rate of arrivals given that there are n  users in the 

queue, w(n),n ≥ 0 .   

 

c servers 

Number of users limited to N  

Arrivals 

 
 

Fig. 1. The Ph/Ph/c/N queue 

 

Thus, we need the w(n)  to solve the M/Ph/c/N queue to obtain the u(n)  needed 

to solve the Ph/M/c/N queue to produce the values of w(n) , naturally leading to a 

fixed-point iteration.  We stop the iteration when the steady-state distributions p(n)  

produced by the two models become sufficiently close, as measured by the mean 

number of users in the system n = np(n)
n=0

N

∑ .   

The resulting fixed-point iteration can be summarized as follows: 



Algorithm 1 

1. Initialize the values of w(n),n ≥ 0  to the inverse of the mean time between 

arrivals. 

2. Solve the M/Ph/c/N queue using the current values of w(n),n ≥ 0 .  

a. Obtain current values for p(n)  and for u(n) . 

b. Compute the current value of n  from this model. 

3. Solve the Ph/M/c/N queue using the current values of u(n),n ≥1  from 

Step 2 

a. Obtain current values for p(n)  and for w(n) . 

b. Compute the current value of n  from this model. 

4. If the values of n  from Step 2 and Step 3 deviate by less than ε > 0  then 

exit, otherwise go to Step 2. 

 

Note that the steady-state probability p(n)  can be expressed as  

p(n) =
1

G

w(i−1)

u(i)i=1

n

∏ , n = 0,1,...,N      (1) 

where G  is a normalizing constant.  Hence, we have 

u(n) = p(n−1)w(n−1) / p(n) .  This formula allows one to determine the values of 

the conditional service rates u(n),n ≥1  if a method such as the matrix-geometric is 

used to solve the M/Ph/c/N queue.  We solve the Ph/M/c/N queue using the fast and 

stable recurrence described in [BRA12b], which produces directly the values of 

w(n),n ≥ 0 . 

We don’t have a theoretical proof of the convergence of the proposed fixed-point 

iteration to a unique solution.  In practice, we used the value of ε =10−7  for the exit 

test.  In the several thousand numerical examples we have explored, the method never 

failed to converge within typically just a few tens of iterations.     

 

a  Number of phases for the inter-arrival time distribution  

b  Number of phases for the service time distribution  

c  Number of servers 

N  
Buffer space, i.e. maximum of users in the system (queued and in 

service) 

p(n)  Marginal probability that there are n  users in the system 

u(n)  
Overall departure rate from the set of c  servers given that the cur-

rent number of users in the system is n  



w(n)  
Arrival rate at the queue given that the current number of users in 

the system is n   

n  
Mean number of users in the system 

p
loss  

Loss probability (i.e. probability that a user finds the buffer full 

upon arrival) 

Table 1. Notation used 

 

The proposed approach decomposes the solution of a Ph/Ph/c/N queue into the so-

lution of an M/Ph/c/N queue with state-dependent rate of arrivals, and that of a 

Ph/M/c/N queue with state-dependent service rates.  Such decomposition would be 

exact if we knew the rates of arrivals as a function of both the number of users n  and 

the current phase of the service process, as well as the rates of service as a function of 

n  and of the current phase of the arrival process.  Since we determine them only as a 

function of n , the method is approximate. As pointed out in [BRA12a], in the case of 

a single server ( c =1 ) the missing phase information may be important when there is 

a small number of users in service (mostly 1).  Therefore, we would expect that the 

accuracy of the approximation would tend to improve as the number of servers in-

creases.  This is confirmed in our numerical results. 

3 Accuracy and speed 

To assess the accuracy of the proposed approximation, we examine the relative per-

centage errors for the mean number in system n  and for the loss probability p
loss

 

which can be expressed as p
loss
= w(N )p(N ) / w(n)p(n)

n=0

N

∑ . 
 

In all examples presented in this paper, we use a 3-phase hyper-exponential distribu-

tion with mean equal to 1 and coefficient of variation close to 1.5.  Such a distribution 

corresponds to a mixture of short, medium and much longer service times.  To study 

the accuracy of the proposed method, we use two types of distributions for the time 

between arrivals.  The first one is a hyper-exponential distribution with 4 phases (H-

4) and a coefficient of variation of 3.  The second distribution is a 16-phase represen-

tation of a Pareto-like heavy-tailed distribution with shape parameter 1.5 and scale pa-

rameter 4 obtained using the PhFit package [HOR02].  Details of the probability dis-

tributions used in our examples are given in the Appendix.   

 

For simplicity, when considering different workload level, we use the notion of of-

fered load per server, defined as the ratio of the mean rate of user arrivals (including 

arrivals lost due to buffer overflow) to the number of servers, recalling that the mean 

service time is set to 1. 

 



Figure 2 shows the relative percentage error for the average number in system n  

as a function of the number of servers c  and of the offered load per server.  The buff-

er size is set to N = 4c .   

 

For the H-4 distribution of the times between arrivals, we observe that the relative 

error remains below 6%.  It tends to be largest when the offered load per server is 

around 1, and it tends to decrease as the number of servers increases.  We notice a 

similar behavior with the Pareto-like distribution except that the accuracy is slightly 

better and the improvement as the number of servers increases is slower. 
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Fig. 2a. H-4 distribution for inter-

arrival times 

Fig. 2b. Pareto-like distribution for in-

ter-arrival times 

 

Fig. 2. Percentage relative errors of the approximate solution for the mean number 

of users in Ph/Ph/c/N queue with N = 4c  

 

Table 2 shows the overall frequency distribution of relative errors for n  for both 

types of distributions of times between arrivals.  We observe that in over 99% of cas-

es the relative error remains below 5% and the mean relative error is less than 1%.  

These results pertain to a total of over 450 study cases. 

 

Mean <5% 5-10% 10-15% >15% 

0.91% 99.14% 0.86% 0 % 0% 

 

Table 2.  Overall accuracy of the approximate solution for the mean number of us-

ers in Ph/Ph/c/N queue 

 

Figure 3 shows the relative error for the loss probability p
loss

with offered per serv-

er load kept at 1 as a function of the number of servers c  and of the buffer size N .  

This type of figure is of interest when dimensioning the system to assure an accepta-

ble loss ratio. We selected the value 1 for the offered load because with this offered 

load the loss probability is highly sensitive to the buffer size.  Moreover, it is for this 

value of the offered load that our approximation tends to be the least accurate so that 

an even better accuracy can be expected for other values of the offered per server 



load. We observe that the relative error in p
loss

remains below 7% for both the H-4 and 

Pareto-like distributions.  Table 3 gives the overall frequency distribution for the rela-

tive errors in the loss probability.   In some 83% of cases the relative error for the loss 

probability is below 5%, and the mean relative error is less than 3%.  These results 

were obtained from over 480 study cases.    
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Fig. 3a. H-4 distribution for inter-

arrival times 

 

Fig. 3b. Pareto-like distribution for in-

ter-arrival times  

Fig. 3. Percentage relative errors of the approximate solution for the loss probabil-

ity in Ph/Ph/c/N queue with an offered load equal to 1 

 

 

Mean <5% 5-10% 10-15% >15% 

2.82% 83.37% 16.63% 0% 0% 

 

Table 3. Overall accuracy of the approximate solution for the loss probability in 

Ph/Ph/c/N queue with an offered load equal to 1 

 

Overall, the results presented illustrate the good accuracy of the proposed approx-

imation.   

 

We now examine its practical numerical behavior starting with its speed of con-

vergence.  We denote by Δ  the absolute value of the difference between the mean 

numbers of users in the systems obtained from the M/Ph/c/N and Ph/M/c/N models in 

the course of our fixed-point iteration between these two models.   

 

In Figure 4, we illustrate the decrease in Δ  as the iteration progresses.   As an ex-

ample, we display results obtained for a system with c =16 , N = 64  and offered per 

server load of 1.  Here, for the distribution of the times between arrivals, in addition 

to the Pareto-like and H-4 distributions, we use also a hyper-exponential with 8 phas-

es (H-8) and the same coefficient of variation of 3 as the H-4 (see Appendix).  Note 

that Figure 4 uses a logarithmic scale for the y-axis clearly showing the rapid conver-

gence of our iteration. We observe an essentially monotonous fast decrease in Δ .  

This type of behavior seems typical for our method.  Although we do not have a theo-



retical proof of convergence, in the thousands of examples we have explored, our 

fixed point never failed to converge within a small to moderate number of iterations. 
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Fig. 4. Convergence speed of the approximate solution for a Ph/Ph/c/N queue with 

c=16, N=64 and an offered load equal to 1 

 

Clearly, even with its good accuracy, our method is only of interest if its overall 

execution time is significantly faster than that of a full exact solution of the original 

Ph/Ph/c/N queue.  It is intuitively clear that, for a given service time distribution, the 

attractiveness of our method is likely to increase as the number of phases in the arri-

val process increases.  We now examine the ratio of the execution time of the full 

numerical solution of the Ph/Ph/c/N queue to the execution time of the proposed ap-

proximation.  To keep this ratio meaningful, we use the same type of method (e.g. 

matrix-geometric, direct iteration, etc) to solve the M/Ph/c/N queue within our fixed-

point iteration and the full Ph/Ph/c/N queue.  Thus our execution time ratio compares 

multiple invocations of the solution of the M/Ph/c/N queue versus a single invocation 

of the Ph/Ph/c/N queue.   
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Fig. 5. Gain obtained in execution times when using the approximate solution for 

Ph/Ph/c/N queues with N = 4c  and an offered load equal to 1 



 

In Figure 5, we display the ratio of the execution times between the solution of a 

full Ph/Ph/c/N queue and our approximation as a function of the number of phases in 

the arrival process for 4 different values of the number of servers c .  We note that 

starting with 4 phases in the arrival process our approximation outperforms the single 

invocation of the solution of the Ph/Ph/c/N queue.  The speed advantage of our ap-

proximation tends to increase with the number of servers.  The approximation is 

roughly twice as fast as the full solution for some 5 or 6 phases and its speed ad-

vantage increases rapidly with the number of phases in the arrival process.   This 

makes our approximation attractive from the standpoint of execution speed when the 

number of phases is 4 or more. 

 

4 Conclusions 

In this paper, we consider the solution of a model of a multi-server (or agent) facility 

with general inter-arrival and service time distributions and a finite buffer size.   It 

may be noted that a simple M/M/c/N queue with the same mean service and inter-

arrival time in general does not produce results accurate enough to be of practical use.   

Few reliable approximations seem to exist for the Ph/Ph/c/N queue, and its full nu-

merical solution suffers from the well known “dimensionality curse”.  We present an 

approximate solution for such a queueing system.  Our solution involves a fixed-point 

iteration between the solutions of two simpler queues: the M/Ph/c/N and the Ph/M/c/N 

queue.  The proposed approximation is conceptually simple; it is also easy to imple-

ment.  Although we do not have a theoretical proof of convergence of the fixed point 

to a unique solution, in many thousands of numerical examples it never failed to con-

verge within typically a small to moderate number of iterations. 

 

A comparison of its execution speed versus that of the direct solution of the full 

Ph/Ph/c/N queue indicates that our approximation becomes interesting from the 

standpoint of its execution speed starting with some 4 phases in the arrival process.  It 

is important to note that our approximation partitions the state space by de-coupling 

the complexity of the service and arrival processes thus requiring a smaller memory 

space that the full numerical solution of the Ph/P/h/c/N queue. 

 

This paper presents only a small fraction of our numerical results.  We studied the ac-

curacy of the approximation for a number of combinations of distributions for the in-

ter-arrival and service times, including low and high variability distributions (hypo-

exponential, Erlang, Cox, hyper-exponential, Pareto-like).  We also explored a large 

number of configurations with different numbers of servers and buffer sizes for a 

large range of offered loads.  It is our conclusion that the accuracy of the approxima-

tion is generally good with respect to the mean number in the system and the loss 

probability.    



References 

[BEG13] Begin, T., and Brandwajn, A. A note on the accuracy of several existing ap-

proximations for M/Ph/m queues. In Proceedings of HSNCE, Kyoto, Japan (2013). 

[BIN05] Bini, D. A., Latouche, G., and Meini, B. Numerical Methods for Structured 

Markov Chains. Oxford University Press, Inc. (2005) 

[BOL05] Bolch, G., Greiner, S., Meer, H., and Trivedi, K. Queueing Networks and 

Markov Chains. Second Edition, Wiley-Interscience (2005). 

[BRA09] Brandwajn, A., and Begin, T. Preliminary Results on a Simple Approach to 

G/G/c-like Queues. In Proceedings of Analytical and Stochastic Modeling Tech-

niques and Applications (ASMTA). pp. 159-173 (2009). 

[BRA12a] Brandwajn, A., and Begin, T. An approximate solution for Ph/Ph/1 and 

Ph/Ph/1/N queues. In Proceedings of the ACM/SPEC International Conference on 

Performance Engineering (ICPE) (2012). 

[BRA12b] Brandwajn, A., and Begin, T. A Recurrent Solution of Ph/M/c/N-like and 

Ph/M/c-like Queues. Journal of Applied Probability 49.1, pp. 84-99 (2012). 

[GAN03] Gans, N., Koole, G., and Mandelbaum, A. Telephone call centers: tutorial, 

review, and research prospects. Manufacturing and Service Operations Manage-

ment, 5, pp. 79-141 (2003). 

[GUP10] Gupta, V., Harchol-Balter, M., Dai, J., and Zwart, B. On the inapproxima-

bility of M/G/K: why two moments of job size distribution are not enough. Queue-

ing Systems, Vol. 64 (1), pp. 5-48 (2010). 

[HOR02] Horváth, A., and Telek, M. Phfit: A general phase-type fitting tool. In Pro-

ceedings of Computer Performance Evaluation: Modelling Techniques and Tools 

(TOOLS) pp. 82-91 (2002). 

[LAT93] Latouche, G., and Ramaswami, V. A logarithmic reduction algorithm for 

quasi-birth-and-death processes. Journal of Applied Probability. vol. 30, pp. 650-

674 (1993). 

[LAT99] Latouche , G.,and Ramaswami, V. Introduction to Matrix Analytic Methods 

in Stochastic Modeling, ASA (1999). 

[RAM86] Ramaswami, V., and Lucantoni, D.M. Algorithms for the multi-server 

queue with phase type service, Stochastic Models, Vol. 1, pp. 393-417 (1985).  

[SEE86] Seelen, L. P. An Algorithm for Ph/Ph/c Queues, European Journal of the 

Operations Research Society, Vol. 23, pp. 118-127 (1986). 

[TAK76] Takahashi, Y., and Takami, Y. A Numerical Method for the Steady-State 

Probabilities of a GI/G/s Queueing system in a General Class, Journal of the Op-

erations Research Society of Japan, Vol. 19, pp. 147-157 (1976). 



Appendix 

1 - H-3 service time distribution 

 

The parameters of this distribution have been selected to represent a mixture of short, medium 

and long service times.  The resulting distribution has a mean of 1 and a coefficient of variation 

of 1.46.  Figure 6 shows the distribution and gives the values of its parameters. 
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Fig. 6. Distribution for the service times 



2 - H-4 and H-8 inter-arrival time distributions 

Figure 7 shows the structure of these distributions.  The parameter values shown correspond to 

a mean of 1 and a coefficient of variation of 3.  For inter-arrival times different from 1, the 

rates of all phases are scaled so as to produce the proper mean.   
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Fig. 7. Hyper-exponential distributions for the inter-arrival times 

 



3 - Pareto-like inter-arrival time distribution 

The structure of the Pareto-like distribution used in our examples is shown in Figure 8.  The pa-

rameter values represented correspond to a mean time between arrivals of 7.797 and a coeffi-

cient of variation of 13.77.  To obtain any desired time between arrivals, we scale the rates of 

all phases by the appropriate factor. 
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Fig. 8. Pareto-like distribution for the inter-arrival times 
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