C. Avin and G. Ercal, On the cover time and mixing time of random geometric graphs, Theoretical Computer Science, vol.380, issue.1-2, pp.2-22, 2007.
DOI : 10.1016/j.tcs.2007.02.065

F. Chung, Spectral Graph Theory, CBMS Number 92, 1994.

R. Ellis, J. Martin, and C. Yan, Random Geometric Graph Diameter in the Unit Ball, Algorithmica, vol.47, issue.4, pp.421-438, 2007.
DOI : 10.1007/s00453-006-0172-y

P. Erdös and A. Renyi, On a problem in the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci, vol.7, pp.623-621, 1962.

P. Erdös, A. Renyi, and V. T. , Sós On a problem of graph theory, Studia Sci. Math. Hungar, vol.1, pp.215-235, 1966.

P. Gupta and P. R. Kumar, Critical Power for Asymptotic Connectivity in Wireless Networks, Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W.H. Fleming, pp.547-566, 1998.
DOI : 10.1007/978-1-4612-1784-8_33

P. Gupta and P. R. Kumar, The capacity of wireless networks, IEEE Transactions on Information Theory 49, pp.388-404, 2000.
DOI : 10.1109/18.825799

G. Kesidis, T. Konstantopoulos, and S. Phoha, Surveillance coverage of sensor networks under a random mobility strategy, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498), 2003.
DOI : 10.1109/ICSENS.2003.1279085

H. Kesten and V. Sidoravicius, The spread of a rumor or infection in a moving population, The annals of probability, pp.2402-2462, 2005.

B. Mckay, The expected eigenvalue distribution of a large regular graph, Linear Algebra and its Applications, vol.40, pp.203-216, 1981.
DOI : 10.1016/0024-3795(81)90150-6

B. Mohar and W. Woess, A Survey on Spectra of infinite Graphs, Bulletin of the London Mathematical Society, vol.21, issue.3, pp.209-234, 1989.
DOI : 10.1112/blms/21.3.209

B. Mohar, The Laplacian Spectrum of Graphs, Graph Theory, Combinatorics , and Appl, vol.2, pp.871-898, 1991.

M. Penrose, Random geometric graphs, 2003.
DOI : 10.1093/acprof:oso/9780198506263.001.0001

M. Penrose, On k-connectivity for a geometric random graph, Random Structures and Algorithms, pp.145-164, 1999.

Y. Peres, A. Sinclair, and P. , Sousi and A. Stauffer Mobile Geometric Graphs: Detection, Coverage and Percolation

J. Klafter, M. F. Shlesinger, and G. Zumofen, Beyond Brownian Motion, Physics Today, vol.49, issue.2, 1996.
DOI : 10.1063/1.881487

I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, On the Lévy-Walk Nature of Human Mobility, IEEE INFOCOM -The 27th Conference on Computer Communications, pp.924-932, 2008.

S. Hong, I. Rhee, S. J. Kim, K. Lee, and S. Chong, Routing performance analysis of human-driven delay tolerant networks using the truncated levy walk model, Proceeding of the 1st ACM SIGMOBILE workshop on Mobility models , MobilityModels '08, pp.25-32, 2008.
DOI : 10.1145/1374688.1374694

M. P. Freeman, N. W. Watkins, E. Yoneki, and J. Crowcroft, Rhythm and Randomness in Human Contact, 2010 International Conference on Advances in Social Networks Analysis and Mining, pp.184-191, 2010.
DOI : 10.1109/ASONAM.2010.57

T. Camp, J. Boleng, and V. Davies, A survey of mobility models for ad hoc network research, Wireless Communications and Mobile Computing, vol.15, issue.5, pp.483-502, 2002.
DOI : 10.1002/wcm.72

R. Groenevelt, P. Nain, and G. Koole, The message delay in mobile ad hoc networks, Perform. Eval, pp.210-228, 2005.

H. Cai and D. Y. Eun, Crossing over the bounded domain, Proceedings of the 13th annual ACM international conference on Mobile computing and networking , MobiCom '07, pp.159-170, 2007.
DOI : 10.1145/1287853.1287873

J. Karvo and J. Ott, Time scales and delay-tolerant routing protocols, CHANTS '08, Proceedings of the third ACM workshop on Challenged networks, pp.33-40, 2008.
DOI : 10.1145/1409985.1409993

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.380.3888

C. Boldrini, M. Conti, and A. Passarella, Modelling data dissemination in opportunistic networks, Proceedings of the third ACM workshop on Challenged networks, CHANTS '08, pp.89-96, 2008.
DOI : 10.1145/1409985.1410002

A. Singer, From graph to manifold Laplacian: The convergence rate, Applied and Computational Harmonic Analysis, vol.21, issue.1, pp.128-134, 2006.
DOI : 10.1016/j.acha.2006.03.004