Detecting event-related recurrences by symbolic analysis: Applications to human language processing

Peter Beim Graben 1 Axel Hutt 2
2 NEUROSYS - Analysis and modeling of neural systems by a system neuroscience approach
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : Quasistationarity is ubiquitous in complex dynamical systems. In brain dy-namics there is ample evidence that event-related potentials reflect such qua-sistationary states. In order to detect them from time series, several segmen-tation techniques have been proposed. In this study we elaborate a recentapproach for detecting quasistationary states as recurrence domains by meansof recurrence analysis and subsequent symbolisation methods. As a result,recurrence domains are obtained as partition cells that can be further alignedand unified for different realisations. We address two pertinent problems ofcontemporary recurrence analysis and present possible solutions for them.
Type de document :
Article dans une revue
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2014, 373, pp.20140089. 〈10.1063/1.1819625〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01077055
Contributeur : Axel Hutt <>
Soumis le : jeudi 18 décembre 2014 - 11:12:39
Dernière modification le : mercredi 28 septembre 2016 - 11:01:05
Document(s) archivé(s) le : vendredi 14 avril 2017 - 14:07:17

Fichier

1.1819625.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Peter Beim Graben, Axel Hutt. Detecting event-related recurrences by symbolic analysis: Applications to human language processing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2014, 373, pp.20140089. 〈10.1063/1.1819625〉. 〈hal-01077055〉

Partager

Métriques

Consultations de la notice

292

Téléchargements de fichiers

65