Convergence of finite volumes schemes for the coupling between the inviscid Burgers equation and a particle

Abstract : In this paper, we prove the convergence of a class of finite volume schemes for the model of coupling between a Burgers fluid and a pointwise particle introduced in [LST08]. In this model, the particle is seen as a moving interface through which an interface condition is imposed, which links the velocity of the fluid on the left and on the right of the particle and the velocity of the particle (the three quantities are all not equal in general). The total impulsion of the system is conserved through time.The proposed schemes are consistent with a “large enough” part of the interface conditions. The proof of convergence is an extension of the one of [AS12] to the case where the particle moves under the influence of the fluid. It yields two main difficulties: first, we have to deal with time-dependent flux and interface condition, and second with the coupling between and ODE and a PDE.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2017, 86, pp.157-196 〈http://www.ams.org/journals/mcom/2017-86-303/S0025-5718-2016-03082-3/〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01077311
Contributeur : Nina Aguillon <>
Soumis le : vendredi 24 octobre 2014 - 14:05:08
Dernière modification le : lundi 17 décembre 2018 - 01:26:46
Document(s) archivé(s) le : dimanche 25 janvier 2015 - 10:25:48

Fichiers

ConvergenceBurgersParticle.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01077311, version 1
  • ARXIV : 1412.0376

Citation

Nina Aguillon, Frédéric Lagoutière, Nicolas Seguin. Convergence of finite volumes schemes for the coupling between the inviscid Burgers equation and a particle. Mathematics of Computation, American Mathematical Society, 2017, 86, pp.157-196 〈http://www.ams.org/journals/mcom/2017-86-303/S0025-5718-2016-03082-3/〉. 〈hal-01077311〉

Partager

Métriques

Consultations de la notice

466

Téléchargements de fichiers

136