
HAL Id: hal-01077628
https://inria.hal.science/hal-01077628

Submitted on 3 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nash and the Bandit Approach for Adversarial
Portfolios

David L. Saint-Pierre, Olivier Teytaud

To cite this version:
David L. Saint-Pierre, Olivier Teytaud. Nash and the Bandit Approach for Adversarial Portfolios.
CIG 2014 - Computational Intelligence in Games, IEEE, Aug 2014, Dortmund, Germany. pp.7,
�10.1109/CIG.2014.6932897�. �hal-01077628�

https://inria.hal.science/hal-01077628
https://hal.archives-ouvertes.fr


Nash and the Bandit Approach for Adversarial
Portfolios

David L. St-Pierre
TAO (Inria), LRI,
Univ. Paris-Sud

Paris, France
Email: davidls@lri.fr

Olivier Teytaud
TAO (Inria), LRI,
Univ. Paris-Sud

Paris, France
Email: olivier.teytaud@inria.fr

Abstract—In this paper we study the use of a portfolio of
policies for adversarial problems. We use two different portfolios
of policies and apply it to the game of Go. The first portfolio
is composed of different versions of the GnuGo agent. The
second portfolio is composed of fixed random seeds. First we
demonstrate that learning an offline combination of these policies
using the notion of Nash Equilibrium generates a stronger
opponent. Second, we show that we can learn online such
distributions through a bandit approach. The advantages of our
approach are (i) diversity (the Nash-Portfolio is more variable
than its components) (ii) adaptivity (the Bandit-Portfolio adapts
to the opponent) (iii) simplicity (no computational overhead)
(iv) increased performance. Due to the importance of games
on mobile devices, designing artificial intelligences for small
computational power is crucial; our approach is particularly
suited for mobile device since it create a stronger opponent simply
by biasing the distribution over the policies and moreover it
generalizes quite well.

I. INTRODUCTION

The use of portfolio is at the center of a revolution in
machine learning [1], [2], Artificial Intelligence, planning,
combinatorial optimization [3], [4], [5] and games [6], [7],
[8]. “Portfolio” here refers to the family of algorithms used
in the solving, whereas “portfolio combination” or “combi-
nation” refers to the combined algorithm. There exist several
ways to build such combination. It can be combined either
“externally”, which refers to a process that do not explicitly
enters in each algorithm, through “chaining” [9], which means
interrupting one and using its state for another algorithm
or even “internally” [10]. The most famous applications of
portfolios are around SAT-solving[11].

In this paper, we focus on portfolio of policies. Portfolios of
policies have been less widely explored, except for e.g. com-
binations of local controllers by Fuzzy Systems[12], Voronoi
controllers[13] or some case-base reasoning[14]. These meth-
ods are based on “internal” combinations, using the current
state for choosing between several policies. We will here focus
on external combinations. Such combinations are sometimes
termed “ensemble methods”; however, we simply consider
weighted averages of already constructed policies, the simplest
case of ensemble methods.

A distribution over a portfolio can be computed either
offline [15] or online [16], [17]. In this paper, we use two
different methods. First we compute a Nash Equilibrium (NE)

over the portfolio of policies in an offline fashion. Second, we
compute online a distribution using a bandit approach. The
second case is adaptive, the coefficients will depend on the
opponent’s decisions.

The main contribution of this paper is to propose a method-
ology that can generically improve the performance of policies
without actually changing the policies themselves, except
through the policy’s options or even the policy’s random
seed. Incidentally, we establish that the random seed can
have a contribution, just because it has an effect on rote
learning; while a fixed random seed cannot be strong against
an adaptive opponent, our policies are more diversified (for
the offline portfolio that we propose, which combines several
seeds) or adaptive (for the online portfolio that we propose).
It is particularly well suited when the computational power is
limited. We study 2 different portfolios of policies:
• The first one is a set of algorithms that can play the game

of Go (actually, different options of a same program). The
goal here is to find a probability distribution for choosing
among these algorithms.

• The second portfolio is composed of a set of random
seeds for a given algorithm that plays the game of Go.
The difficulty here lies in finding a distribution over the
set of random seeds such that it provides a strong strategy
either versus a known opponent (an opponent for which
we know the set of random seeds) or an unknown one.

In all cases we show that there is a way to compute a distri-
bution over the portfolio such that it generates a robust (not
exploitable) agent: this is our Nash-portfolio. Moreover we
show that we can learn a specialized distribution, adaptively,
given a fixed stationary opponent. This is our UCBT-portfolio.

The rest of the paper is divided as follows. Section II
formalizes the settings. Section III describes our approach.
Section IV presents the results and Section V concludes.

II. PROBLEM STATEMENT

A policy π is defined as follows. Let us consider a state
space S, an initial state s0 ∈ S and a transition function
(s, a) 7→ (s′, r) where r is the reward when playing action
a in state s. A policy π(·) selects an action a ∈ As given
the current state s ∈ S, where As is the set of legal actions
given the state s. The resulting state being s′. In several cases,



the reward may not be directly observable. By repeating this
process until a final state sf ∈ Sf ⊆ S is reached, where Sf

is the set of final states, then the reward can be retrieved.
Moreover, we are interested in adversarial portfolios. This

means that more than one player can intervene in the outcome.
We limit ourselves to constant-sum 2-player games. In the
2-player case, each state s is equipped with a player index,
stating whether, in state s, it is player 1’s turn to play or player
2’s turn to play. A simulation starts at s0, then decisions are
made by players, until a final state sf is reached. Thus, to get
a reward r, we must know the initial state s0, the policy π1
for player 1 and the policy π2 for player 2.

We consider here matrix games with sum equal to 1 instead
of an arbitrary constant, without loss of generality. Consider
a matrix K ×K ′, with values in [0, 1]. This matrix models a
game as follows:
• Simultaneously and privately:

– Player 1 chooses i ∈ {1, . . . ,K}.
– Player 2 chooses j ∈ {1, . . . ,K ′}.

• Then they receive rewards as follows:
– Player 1 receives reward Mi,j .
– Player 2 receives reward 1−Mi,j .

A pure strategy (for player 1) consists in playing a given,
fixed i ∈ {1, . . . ,K}, with probability 1. A mixed strategy,
or simply a strategy, consists in playing i with probability
pi, where

∑K
i=1 pi = 1 and ∀i ∈ {1, . . . ,K}, pi ≥ 0. Pure

and mixed strategies for player 2 are defined similarly. Pure
strategies are a special case of mixed strategies.

It is known since [18] that there exist strategies p and q for
the first and second player respectively, such that

∀(p′, q′), p′Mq ≤ pMq ≤ pMq′. (1)

p and q are not necessarily unique, but the value v = pMq
is unique and it is, by definition, the value of the game.
The exploitability of a strategy p for the first player is
exploit1(p) = v −minq pMq. exploit1(p) = 0 is equivalent
to the fact that p is the first-player part of a Nash equilibrium
(p, q). The exploitability of a strategy q for the second player is
exploit2(q) = maxp pMq−v and it verifies similar properties.

III. APPROACH

Section III-A explains how to combine policies offline,
given a set of policies for player 1 and a set of policies
for player 2. Section III-B explains how to combine policies
online, given a portfolio of policies for player 1 and given an
opponent.

A. Nash-portfolios: combining policies

Consider two players P1 and P2, playing some game (not
necessarily a matrix game). Assume that P1 has a portfolio
of K policies. Assume that P2 has a portfolio of K ′ policies.
Then, we can construct a static combination of these policies
by solving (i.e. finding a Nash equilibrium of) the matrix game
associated to the matrix M , with Mi,j the winning rate of
the ith policy of P1 against the jth policy of P2. Solving

this 1-sum matrix game provides p1, . . . , pK and q1, . . . , qK′ ,
probabilities, and the combination consists in playing, for P1,
the ith policy with probability pi and, for P2, the jth policy
with probability qj . Such a combination will be termed here
a Nash-portfolio. By construction,
• the Nash-portfolio can play both as Black and as White;
• the Nash-portfolio does not change over time but is, in

the general case, stochastic.
Definition: given a set P1 of K policies for player 1 and

a set P2 of K ′ policies for player 2,
• the strategy (as player 1) playing the ith strategy for

player 1 with probability pi;
• and the strategy (as player 2) playing the ith strategy for

player 2 with probability qi;
is termed the Nash-portfolio of (P1, P2) if the pi and qi are
defined as solutions of Eq. 1.

The Nash equilibrium can be found using an exact solving
of the matrix M [19]. It can also be found approximately
and iteratively, in sublinear time, as shown by [20], [21]; the
EXP3 algorithm is classical for doing so. Coevolution is also
a possibility [22], [23], [24].

From the properties of Nash equilibria, we deduce that the
Nash-portfolio has the following properties:
• It depends on a family of policies for player 1 and on a

family of policies for player 2. It is therefore based on a
training, as in, e.g., [15] in the framework of optimization.

• It is optimal (for player 1) among all combinations of the
pure strategies in the portfolio of player 1, in terms of
both

– worst case among the pure strategies in the portfolio
of player 2;

– worst case among the mixed strategies over the
portfolio of player 2.

• It is not necessarily uniquely defined.
In optimization settings, it is well known[25] that having a

somehow “orthogonal” portfolio of algorithms, i.e. algorithms
as different from each other as possible, is a good solution for
making the combination efficient. It is however difficult, in the
context of policies, to know in advance if two algorithms are
orthogonal.

B. UCBT-Portfolio

Section III-A assumed that P1 and P2, two sets of strategies,
are available, and that we want to define a combination of
policies in P1 (resp. in P2). A different point of view consists
in adapting online the probabilities pi and qi, against a fixed
opponent. We propose the following algorithm (in the case
of player 1 having K policies at hand), directly inspired by
the bandit literature[26], [27], and, more precisely, by Upper-
Confidence-Bounds-Tuned (UCBT)[28]:
• Define ni = 0, ri = 0, for i ∈ {1, . . . ,K}.
• For each iteration t ∈ {1, 2, 3, . . . }.

– compute for each i ∈ {1, . . . ,K} score(i) =
min(1, ri/ni +

1
100

√
C log(4pt)/ni



+ 16
100 log(4

pt)/ni). using X/0 = +∞ (even for
X = 0), p = 2.1 and C = 2 (UCBT, i.e. UCB-
Tuned, formula).

– choose k maximizing score(k).
– play a game using algorithm k in the portfolio.
– if it is a win, ri ← ri + 1.
– ni ← ni + 1.

Definition. We refer to this adaptive player as UCBT-
Portfolio, or Bandit-Portfolio.

IV. EXPERIMENTS

The game of Go is an ancient oriental game, born in China
probably at least 2500 years ago. It is still a challenge for
artificial intelligence, as even though Monte-Carlo Tree Search
(MCTS[29]) revolutionized the domain, the best programs
are still far from the professional level. Go is a very deep
game[30], and professional Go players are still able to win
games against the best Go programs in 9x9.

Section IV-A focuses on a portfolio of different algorithms
(actually, variants of a same program, using different options)
and explores the performance of our approach on this setting.
Next, Section IV-B studies our approach but this time over a
portfolio of deterministic policies, obtained by fixing random
seeds in a randomized program. Thanks to very low compu-
tational cost, both settings are relevant for the application of
our approach on mobile devices.

A. Portfolio of algorithms

1) Test case: variants of a program: We consider the
problem of combining several options, leading to several
variants (each variant corresponds to a set of options which
are enabled), of an artificial intelligence for the game of Go.

Our matrix M is a 32×32 matrix, where Mi,j is the winning
rate of the ith variant of GnuGo (as black) against the jth

variant of GnuGo (as white). We consider all combination
of 5 options of GnuGo, hence 32= 25 variants. In short,
the first option is ‘cosmic-gnu’, which focuses on playing at
the center, thus usually weakening the AI. The second option
is the use of fuseki (global opening book). The third option
is ‘mirror’, which consist in mirroring your opponent at the
early stage of the game. The fourth option is the large scale
attack, which evaluates if a large attack across several groups is
possible. The fifth option is the break-in. It consists in breaking
the game into territories that require deeper tactical reading
and are impossible to detect otherwise. It revises the territory
valuations. Further details on the 5 options are listed on our
website https://www.lri.fr/∼teytaud/games.html.

In this section, experiments are performed on the convenient
7x7 framework, with MCTS having 300 simulations per move
- this setting is consistent with the mobile device setting.

After extracting the matrix M by intensive experiments on
a cluster, we solve the matrix game associated to M and get
a portfolio for Black and a portfolio for White.

In this section we refer to the ith algorithm for Black as
BAIi (Black Artificial Intelligence # i), and WAIj is the jth

algorithm for White.

2) Nash-based portfolio: We here check the exploitability
of our method, compared to other combinations. The other
considered combinations are:
• Uniform combination: each pure strategy is equally likely.
• Maximal pure combination: choose the pure strategy

which maximizes the average reward against the uniform
combination.

By definition, the exploitability of the Nash-portfolio method
is zero, because it is a Nash equilibrium. But other methods
usually have a positive exploitability. We here quantify this
phenomenon. We get the following on the data set described
above (variants of a program):
• Value of the 32×32 matrix game: 61.18% (i.e. the game

is easier for Black).
• In the NE, the number of selected options is 5 for Black

and also 5 for White, i.e. roughly 15.6% of the variants
are in the Nash.

• Against a uniform random combination of the 32 options,
the winning rate of the Nash-portfolio as Black (resp.
White) is 65.52% (resp. 49.71%), i.e. the Nash-portfolio
outperforms the uniform random combination by 4.35%
as Black (resp. 10.9% as White).

• Exploitability of Portfolios with one option only (selected
as the best on average):

– Exploitability of the Portfolio restricted to BAIi, with
i = argmax

∑K′

j=1Mi,j : 3.15%.
– Exploitability of the Portfolio restricted to WAIj,

with j = argmin
∑K

i=1Mi,j : 5.85%.
Conclusion: We conclude that our Nash-combination is mod-
erately better than each combination of options considered
separately. This section is devoted to experiments limited to a
learning set of 32 combinations of options for each player, and
therefore could be considered as an overfit; we will check the
efficiency of our Nash-Portfolio in generalization in Section
IV-B4, on the second test case (random seeds), for which
results of the Nash portfolio are better.

3) UCBT Portfolio: Here we present the losing rate of our
UCBT Portfolio against 2 baselines. The first baseline is the
Nash equilibrium (label Nash in Figure 1), which consists
in computing the Nash portfolio as in the previous section.
The second baseline is the uniform player (label Unif ) which
consists in playing each variant with the same probability.

Here, we apply our UCBT Portfolio for learning
• As White against Nash-portfolio.
• As Black against Nash-portfolio.
• As White against each pure Black policy.
• As Black against each pure White policy.

Losing rates of the recommended variant are presented in
Fig. 1. All results are averaged over 1000 runs. The X-axis
shows the number of iterations of UCBT (i.e. number of
played games for learning) whereas the Y-axis represents the
frequency at which the game is lost.

Conclusion: We see that (i) UCBT eventually reaches,
against Nash-portfolio, approximately the value of the game
for each player (ii) the Nash-portfolio is among the most



Fig. 1: Losing rate of UCBT-portfolio, versus the online learning time, against (i) Nash-Portfolio (black line) (ii) each variant
independently (stars). X-axis: log2(number of iterations of UCBT (i.e. number of played games for learning). Y-axis: frequency
at which the game is lost. In this case, the variants under work are GnuGo variants (different options). All experiments are
reproduced 1000 times.

difficult opponents (the curve decreases slowly only). (iii) each
deterministic combination of options is clearly beaten after
some runs, which shows the adaptivity of UCBT Portfolio
and therefore its efficiency as a eTeacher.

B. Portfolio of Random Seeds

1) Test case: The previous section combines existing algo-
rithms. Now, this section (i) creates variants thanks to different
random seeds and (ii) combine them. This means that Mi,j

is 1 if, with random seed i, Black wins against White with
random seed j. Importantly, the number of games to be played
for getting the matrix involved in the Nash-portfolio (Eq. 1)
is K2, with K the number of random seeds under tests -
no need for playing multiple games as random seeds make
it deterministic. For making the random seed principle more
convincing, we switch to 9x9, which is harder than 7x7 in
terms of rate-learning.

[6] proposed a combination of opening book, using tools
similar to those we propose in Section III-A for combining
policies. We here propose to simply use GnuGo’s random seed
for having several Gnugo variants (hence, programs playing

the opening differently). The random seed of GnuGo makes
the program deterministic, by fixing the seed used in all
random parts of the algorithm. We define 32 variants, using
“GnuGo –level 10 –random-seed V” with V in {1, . . . , 32}.
In other words, we use a MCTS with 80 000 simulations per
moves.

2) Nash-based portfolio: We here check the exploitability
of our method, compared to other combinations. By definition,
the exploitability of the Nash-portfolio method is zero, because
it is a Nash equilibrium. But other methods are exploitable.
We here quantify this phenomenon. We get the following on
the data set described at the beginning of Section IV:

• Value of the game: 54.16% (i.e. the game is easier for
Black).

• The winning rate at the Nash equilibrium for the Black
player is incidentally the value of the game 54.16%.

• In the NE, the number of selected options is 11 for Black
and 9 for White. This indicates that roughly 1

3 of the
random seeds are relevant.

• Against a uniform random combination of the 32 options,



the winning rate of the Nash-portfolio as Black (resp.
White) is 68.51% (resp. 38.80%), i.e. the exploitability
of the uniform random combination is 14.35% (resp.
15.36%).

• Exploitability of Portfolios with one option only:
– Exploitability of the Portfolio restricted to BAIi, with
i = argmax

∑K′

j=1Mi,j : 44.24%.
– Exploitability of the Portfolio restricted to WAIj,

with j = argmax
∑K

i=1Mi,j : 33.38%.
Conclusion: Nash-portfolios seems useful even in cases in

which an optimal deterministic policy exists, such as fully
observable games (Go is such a case). The generalization
ability will be tested in Section IV-B4.

3) Learning UCBT: Here we present the losing rate of
UCBT against 3 baselines. The first baseline is the Nash
equilibrium (label Nash and previously defined in Section
III-A. The second baseline is the uniform player (label Unif )
which consists in playing uniformly each option of the bandit.
The third baseline consists in playing a single deterministic
strategy (only one random seed) regardless of the opponent.

Figure 2 presents the results. The x-axis represents the
number of iterations (on logarithmic scale) of UCBT (i.e.
number of played games for learning). The y-axis is the
frequency at which the game is lost. All results are averaged
over 1000 runs.

First and foremost, as the number of iterations grows, there
is a clear learning against both Nash and Unif baselines. We
see that (i) UCBT eventually reaches, against Nash-portfolio,
approximately the value of the game for each player (ii) the
Nash-portfolio is among the most difficult opponents (the
curve decreases slowly only). We can also observe from Figure
1 that against the Unif baseline UCBT learns a strategy that
outperforms this opponent.

When it plays as the Black player, it takes less than 27 (128)
games to earns the correct strategy and wins with a 100 % ratio
against every single deterministic variant. As the White player,
it is even faster with only 25 games required to always win.

Conclusion: UCBT can learn very efficiently against a fixed
deterministic opponent; this confirms its ability as a eTeacher.
It performs better than Nash-portfolio against Uniform, show-
ing that even against a stochastic opponent it can perform
well, and in particular better than the Nash. This is not a
contradiction with the Nash optimality; the Nash portfolio is
optimal in an agnostic sense, whereas UCBT tries to overfit
its opponent and can therefore exploit it better.

4) Generalization ability of Nash-Portfolio: Here we are
interested in the generalization of a Nash-portfolio. In other
words, whether it is possible to use a distribution computed
over a portfolio of policies (learnt against a given set of
opponent policies) against new opponent policies that were
not part of the initial matrix. The idea is to select a submatrix
of size N , choose a combination in this submatrix (i.e. this
is the learning set) and make it play against the remainder of
the seeds (i.e. this is the validation set).

Figure 3 presents the results of 3 different approaches.
The first approach, labeled Nash, is to use the distribution

representing the NE computed on the initial submatrix against
the new opponent policies. The second approach, labeled
BestArm is to select the single best performing policies. The
third, our baseline, is to use the uniform distribution Unif over
the initial set of seeds. The x-axis represents the number of
policies N considered (hence a matrix M = N2). The y-axis
shows the win rate of the different approaches. All experiments
are reproduced 1 000 times.

From Figure 3 we can observe that there is a clear advantage
to use either the Nash or the BestArm approach when facing
a new set of policies. Moreover, as expected, as the size of
the initial matrix grows, the winning rates of both Nash and
BestArm increase when compared to the baseline.

It does not come as a surprise that the approach BestArm
performs slightly better than the Nash against a uniformly
random opponent. The BestArm approach is particularly
well suited to play against such an opponent. However, the
BestArm policy is easily exploitable.

Figure 4 shows the difference between a Nash policy
and a BestArm policy in terms of exploitability. The x-axis
represents the number of policies considered. The y-axis shows
the loss rates. All experiments are reproduced 100 times.

From Figure 4 it clearly appears that BestArm is a strategy
very easy to exploit. Thus, even if Figure 3 shows that the use
of the BestArm policy outperforms Nash versus the uniform
baseline, Nash is a much more resilient strategy.

Conclusion: The Nash portfolio and the BestArm port-
folio provides a stable solution which generalizes against
new opponents. The Nash portfolio is by definition optimal
as a worst case against a given set of opponents, but the
BestArm performs better in generalization against a fixed
uniform portfolio.

V. CONCLUSION

We proposed two algorithms for combining policies:
• The Nash-Portfolio, which learns offline, given a family

of variants for each player;
• The Bandit(UCBT)-Portfolio, which learns online, given

an opponent.
We have seen that:
• The Nash-Portfolio is more diversified than any of its

components; it is harder to learn against than any of its
components and harder to learn against than the uniform-
Portfolio;

• The UCBT-Portfolio can learn a combination until reach-
ing the exploitability of a stationary opponent (this is
mathematically guaranteed by properties of UCBT, which
is a consistent bandit algorithm in the discrete setting).
In particular, it defeated clearly the deterministic variants
in Fig. 2, reaching 100% winning rate. It also performs
quite well against the default policy, which is uniformly
randomized random seed. Only the Nash-Portfolio resists
much better, which shows that we can enhance a ran-
domized algorithm a lot, just by biasing the choice of
the random seed.



0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
(T)

P
e
rf

o
rm

a
n
c
e
(%

)

 

 

Losing rate vs Nash

Losing rate vs Unif

(a) Black

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log
2
(T)

P
e
rf

o
rm

a
n
c
e
(%

)

 

 

Losing rate vs Nash

Losing rate vs Unif

(b) White

Fig. 2: Losing rate of UCBT-portfolio, versus the online learning time, against (i) Nash-Portfolio (black line) (ii) each option
independently (stars). X-axis: log2(number of iterations of UCBT (i.e. number of played games for learning). Y-axis: frequency
at which the game is lost. In this case, the variants under work are random seeds. All experiments are reproduced 1000 times.

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

Submatrix Size

P
e
rf

o
rm

a
n
c
e
(%

)

 

 

Row Nash vs Unif

Row Unif vs Unif

Row Best Arm vs Unif

(a) Black

0 5 10 15 20 25 30
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Submatrix Size

P
e
rf

o
rm

a
n
c
e
(%

)

 

 

Col Nash vs Unif

Col Unif vs Unif

Col Best Arm vs Unif

(b) White

Fig. 3: Winning rate of 3 baselines against the uniform strategy in generalisation. The x-axis represents the number of policies
considered. The y-axis shows the win rates. All experiments are reproduced 1000 times.

The Nash-portfolio generalizes efficiently to new opponents,
as shown by Section IV-B4. Therefore our tools provide an
easy improvement, on top of randomized algorithms equipped
with a random seed, or on top of variants of an algorithm.

The computational cost could potentially become an issue in
Section IV-A (as we averaged multiple games for building the
matrix). It is not the case in Section IV-B where deterministic
games are used. It should also be pointed out that solving
Nash was fast, and if needs be, we can further the speed of
the computation using algorithms that can ε-approximate a NE

in sublinear time[20], [21] - so that a number of games linear
in max(K,K ′) log(KK ′)/ε2 (less than the number K ×K ′
of elements in the matrix) is sufficient.

Results are therefore both

• An improvement in terms of eTeaching; our UCBT-
Portfolio algorithm is more difficult to overfit, more di-
versified, than the uniform random seed, and is adaptive.
This does not involve any additional computing power as
UCBT is online and has a negligible internal cost.

• An improvement in terms of adaptivity; our Nash-



Portfolio is harder to overfit. At the end of the offline
computation of the Nash equilibrium, it is just a bias in
the random seed distribution, so the additional computa-
tional cost is negligible. The non-intuitive key point in
the “random seed” part of this work is that biasing the
random seed has an impact.

• An improvement in terms of playing strength, as our
Nash-Portfolio performs better than each of its compo-
nents.

REFERENCES

[1] P. E. Utgoff, “Perceptron trees: A case study in hybrid concept repre-
sentations,” in National Conference on Artificial Intelligence, 1988, pp.
601–606.

[2] D. W. Aha, “Generalizing from case studies: A case study,” in Proceed-
ings of the 9th International Workshop on Machine Learning. Morgan
Kaufmann Publishers Inc., 1992, pp. 1–10.

[3] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham,
“Understanding random sat: beyond the clauses-to-variables ratio,” in
Principles and Practice of Constraint Programming CP 2004, M. Wal-
lace, Ed., vol. 3258 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2004, pp. 438–452.

[4] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Hydra-mip:
automated algorithm configuration and selection for mixed integer
programming,” in RCRA Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion at the
International Joint Conference on Artificial Intelligence (IJCAI), 2011.

[5] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” CoRR, vol. abs/1210.7959, 2012.

[6] R. Gaudel, J.-B. Hoock, J. Pérez, N. Sokolovska, and O. Teytaud, “A
principled method for exploiting opening books,” in Computers and
Games. Springer, 2011, pp. 136–144.

[7] B. Bouzy, M. Métivier, and D. Pellier, “Hedging algorithms and repeated
matrix games,” in ECML Workshop on Machine Learning and Data
Mining In and Around Games, 2011.

[8] M. Swiechowski and J. Mandziuk, “Self-adaptation of playing strate-
gies in general game playing,” IEEE Transactions on Computational
Intelligence and AI in Games (TCIAIG), 2014.

[9] J. Borrett, E. P. K. Tsang, and C. C. Sq, “Towards a formal framework
for comparing constraint satisfaction problem formulations,” 1996.

[10] V. Vassilevska, R. Williams, and S. L. M. Woo, “Confronting hardness
using a hybrid approach,” in Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm. ACM, 2006, pp. 1–
10.

[11] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: Portfolio-
based algorithm selection for sat.” J. Artif. Intell. Res.(JAIR), vol. 32,
pp. 565–606, 2008.

[12] P. O. Stalph, M. Ebner, M. Michel, B. Pfaff, and R. Benz, in GECCO,
C. Ryan and M. Keijzer, Eds., pp. 535–536.

[13] S. Teraoka, T. Ushio, and T. Kanazawa, “Voronoi coverage control with
time-driven communication for mobile sensing networks with obstacles.”
in CDC-ECE. IEEE, 2011, pp. 1980–1985. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cdc/cdc2011.html#TeraokaUK11

[14] O. Lejri and M. Tagina, “Representation in case-based reasoning applied
to control reconfiguration,” in Advances in Data Mining. Applications
and Theoretical Aspects, ser. Lecture Notes in Computer Science,
P. Perner, Ed. Springer Berlin Heidelberg, 2012, vol. 7377, pp. 113–120.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-31488-9 10

[15] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sell-
mann, “Algorithm selection and scheduling,” in 17th International
Conference on Principles and Practice of Constraint Programming,
2011, pp. 454–469.

[16] M. Gagliolo and J. Schmidhuber, “Learning dynamic algorithm portfo-
lios,” vol. 47, no. 3-4, 2006, pp. 295–328.

[17] W. Armstrong, P. Christen, E. McCreath, and A. P. Rendell, “Dynamic
algorithm selection using reinforcement learning,” in International Work-
shop on Integrating AI and Data Mining, 2006, pp. 18–25.

[18] J. Nash, “Some games and machines for playing them,” Rand Corpora-
tion, Tech. Rep. D-1164, 1952.

0 5 10 15 20 25
0.7

0.75

0.8

0.85

0.9

0.95

1

Submatrix Size

L
o
o
s
in

g
 R

a
te

 

 

generalised Nash

Best Arm

Fig. 4: Loosing rate of the Nash and BestArm policies
against an opponent that knows their respective strategy. The
x-axis represents the number of policies considered. The y-
axis shows the loss rates. All experiments are reproduced 100
times.

[19] K. Gale and Tucker, “Linear programming and the theory of games,” in
Activity Analysis of Production and Allocation, Koopmans, Ed. Wiley,
1951, ch. XII.

[20] M. D. Grigoriadis and L. G. Khachiyan, “A sublinear-time randomized
approximation algorithm for matrix games,” Operations Research Let-
ters, vol. 18, no. 2, pp. 53–58, Sep 1995.

[21] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling
in a rigged casino: the adversarial multi-armed bandit problem,” in
Proceedings of the 36th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Los Alamitos, CA, 1995, pp.
322–331.

[22] J. Paredis, “Coevolutionary computation,” Artificial Life, vol. 2, pp. 355–
375, 1995.

[23] C. Ong, H. Quek, K. Tan, and A. Tay, “Discovering chinese chess
strategies through coevolutionary approaches,” in IEEE Symposium on
Computational Intelligence and Games, 2007, pp. 360–367.

[24] P. Drake and Y.-P. Chen, “Coevolving partial strategies for the game of
go,” in International Conference on Genetic and Evolutionary Methods.
CSREA Press, 2008.

[25] H. Samulowitz and R. Memisevic, “Learning to solve qbf,” in Proceed-
ings of the 22nd National Conference on Artificial Intelligence. AAAI,
2007, pp. 255–260.

[26] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, pp. 4–22, 1985.

[27] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2/3, pp.
235–256, 2002.

[28] J. Audibert, R. Munos, and C. Szepesvri, “Exploration-exploitation
trade-off using variance estimates in multi-armed bandits,” Theoretical
Computer Science, 2008.

[29] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-
Carlo Tree Search,” In P. Ciancarini and H. J. van den Herik, editors,
Proceedings of the 5th International Conference on Computers and
Games, Turin, Italy, pp. 72–83, 2006.

[30] B. Robertie, “Backgammon,” Inside Backgammon, vol. 2, no. 1, p. 4,
1980.


