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ABSTRACT

This paper analyzes the requirements of mobile health appli-
cations concerning real-time criteria and describes the cur-
rent state of real-time capabilities on constrained devices
and low-power networks. Based on this analysis we observe
that for these applications real-time capabilities are not only
required per system, but also for the entire distributed sys-
tem. Furthermore, we describe which technologies are avail-
able for the network stack, the software platform, and the
hardware in order to fulfill these requirements. From the
requirements on the network stack, following a top-down
approach, we derive hardware prerequisites. We then con-
duct measurements on typical IoT hardware and operating
system. We conclude that it is feasible to fulfill the identified
prerequisites.
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1. INTRODUCTION
When industry began to deploy computers in factories,

power plants, vehicles, and hospitals to automate the con-
trol in these mixed critical systems, a bunch of new pro-
tocols and wired buses emerged. Their specifications were
specially designed to enable communication within these sys-
tems. Some well-known examples for theses protocols and
buses are CAN-bus, M-Bus, HART, and BACnet. Over the
last two decades a trend has evolved to replace these spe-
cialized communication systems by more generic solutions
based on Ethernet and IP. Since connectivity between vari-
ous, often heterogeneous networks and Internet hosted ser-
vices has become more and more important, the deployment
of specialized gateways increases complexity and decreases
efficiency. Nowadays a significant amount of deployed sys-
tems in building and industrial automation, car entertain-
ment systems, and medical appliances are based on IP and
Ethernet [1]. However, the use of IP over wireless networks
is still a rare case. While specialized wireless technologies
based on technologies like IEEE 802.15.4, Wireless HART,
or DECT are already widely used, the applicability of IP,
particular over multi-hop wireless networks is still consid-
ered to pose too many problems to the system to be used in
critical systems. Nevertheless, the increasing requirements
to interconnect various systems and attach them to the In-

ternet, make us believe that IP driven systems will emerge
also in the domain of wireless networks with mixed critical-
ity. These systems will also have a need for a certain de-
gree of multi-hop communication, since one cannot expect
to have sufficiently good wireless link to every node, even
in a small space such as a hospital room [2]. Hence, even
though the maximum number of hops most likely will not
be very high (i.e. could be as low as 2), the network must be
able to perform self-configuration and self-healing features
over multi-hop communication.

The use cases for mobile health appliances are good exam-
ples for such systems. A typical scenario for a mobile health
application is depicted in figure 1. Here, the patient is moni-
tored by various devices. These devices, like normal wireless
sensor nodes, are equipped with an highly energy-efficient
micro-controller, a low-power radio transceiver, and one or
more sensors that can, for example, measure the blood pres-
sure or the heart rate. Characteristic properties for these
constrained nodes are defined in RFC 7228 [3]. Using their
radio transceivers, they can build a wireless body area net-
work (WBAN) and may connect eventually to other close-by
systems like smartphones or home gateway to access services
in the Internet.

In this paper we will shed a light on the particular re-
quirements of mobile health applications on the network.
Section 2 will present these requirements in detail. The fol-
lowing section 3 will then present the state of the art con-
cerning communication protocols, software platforms, and
hardware. Finally, section 4 presents the results of some
measurements on realistic systems concerning the described
requirements.

2. REQUIREMENTS OF MOBILE HEALTH

APPLICATIONS
The term ”real-time” can be found in almost every publi-

cation on mobile health applications. However, throughout
literature it is often used with differing notions. In many
cases the term refers to the capability of a system to per-
form live monitoring or online processing of data. In con-
trary, this paper will analyze the real-time requirements of
mobile health applications in a stricter definition of the term
as denoted by Hou and Kumar [4]. According to this defi-
nition ”a real-time system is required to complete its work
and deliver its services on a timely basis”. The following
paragraphs will describe typical challenges of mobile health



Figure 1: Typical mobile health scenario with var-
ious health monitoring sensors connected to each
other in a WBAN. More powerful mobile devices
like smartphones and laptops or fixed devices within
a hospital room can serve as border routers to con-
nect the WBAN to the Internet and access online
medical records or call the ambulance in case of an
emergency.

applications and derive subsequently the requirements on
the real-time capabilities of the system. Furthermore, it is
important to consider the real-time properties on a single
machine and for the entire distributed system. As we will
see, the latter one is dependent on the first one.

We distinguish the following main requirements for mobile
health applications: (1) accuracy, (2) reliability, (3) robust-
ness, (4) timeliness, and (5) wearability.

2.1 Accuracy
Accurate measurements are obviously a strong require-

ment for health monitoring systems. This applies for the
precision of the sensor data as well as for the exact time-
stamping of the measured values. While the first demand
can be mostly tackled during the process of hardware de-
sign and applying appropriate filter techniques, the second
one is challenging for the system software itself. Exact time-
stamping require deterministic system behavior to minimize
the jitter of the time-stamps as much as possible. It also re-
quires clock synchronization techniques in order to provide
comparable time-stamps.

2.2 Reliability
Providing accurate measurements is not sufficient, but re-

liable transmission of these values is also mandatory. The
problem of reliable communication can be tackled at vari-
ous layers. Locally performed feature extraction may serve
to reduce heavy demands on the communication. Using pre-

dictable and deterministic MAC layer protocols as described
in section 3 can minimize the probability of data loss.

Additionally, several of the envisioned mobile health ap-
plications have the need to work together in a synchronized
manner. Especially for these systems it is of importance to
minimize jitter at all layers. This means that already the
exact moment of the measurement must vary as little as
possible and that network communication up to the deliv-
ery to the application itself should add ideally no temporal
variance.

2.3 Robustness
The heterogeneity of mobile health systems and their de-

ployment fields demands techniques to harden the network
against interferences. TDMA based MAC protocols help to
avoid collisions on the medium and, thus, minimize internal
interference. Channel assignment algorithms and FDMA
MAC protocols can serve to make better use of the available
frequency bandwidth in order to mitigate internal as well as
external interferences [5].

2.4 Timeliness
Particular for live critical systems it is of prime impor-

tance to transmit information timely. Therefor, it is crucial
to schedule the transmissions in a way that potential dead-
lines of the application can be fulfilled. Provisioning such
a schedule, and thereby guaranteeing certain deadlines be-
tween two endpoints, increases also the possibility to predict
the overall throughput of every single node in the network.
In order to establish such a schedule a tight cooperation
between the MAC layer and upper layers is required.

2.5 Wearability
There are two main problems with traditional health mon-

itoring devices, such as Holter monitors [6]: (1) Since the
data is processed offline, they are not able to perform con-
tinual online monitoring and early detection of medical dis-
orders. (2) They limit the patient’s activity and level of
comfort, which influences the measured results. In order to
avoid these problems, the next generation of health moni-
toring device has to be as small as possible and work au-
tonomously. The technical advances of miniaturization and
integration, wireless networking, and energy efficiency are
enablers for these new devices. However, the size of the
battery is still the limiting factor for the size and weight of
sensor devices. Thus, in order to enable long-term moni-
toring of a patient’s medical situation, the mobile health de-
vices have to make a high use of the hardware’s power saving
capabilities. Fine granular measurements show that maxi-
mum energy efficiency can only be achieved by sending the
device, i.e. the micro-controller and the radio chip, as much
as possible to power-down modes [7]. This in turn makes
the design of network stacks based on time-slotted medium
access very attractive for health monitoring devices.

3. STATE OF THE ART
This section will present the state of the art technologies

that are available to implement mobile health applications.
From the requirements as identified in section 2 we derive re-
quirements for the software stack which then in turn defines
the requirements for the hardware platform.

3.1 Network Stacks



Taking into account the described requirements for mobile
health applications, researchers, engineers, and protocol de-
signers have developed several techniques to tackle the chal-
lenges posed by a wireless multi-hop network. In this paper
we will focus on two key aspects of this problem space: the
particular task of the media access control (MAC) and the
design of a full network stack able to give the required guar-
antees.

3.1.1 MAC protocols

In order to fulfill the described requirements, the MAC
protocol has a pivotal role. CSMA, TDMA, and FDMA
based channel access methods are typically used in the area
of low-power and lossy networks. While CSMA as it used for
traditional IEEE 802.15.4 networks has the lowest require-
ments on the hardware and is comparable easy to imple-
ment, it can only give very little guarantees and is therefore
not suitable for most mobile health applications [8]. On the
contrary, TDMA and FDMA make additional demands on
the hardware and software, such as guaranteed transceiver
switching times or clock synchronization, but are more ro-
bust, reliable, and able to provide a deterministic behavior.
Typical protocols in this area are T-MAC [9] and Bluetooth
Low Energy [10]. In 2012 IEEE published IEEE 802.15.4e
standard which comprises an amendment to the original
MAC protocol of IEEE 802.15.4, introducing a Timeslotted
Channel Hopping (TSCH) mode [11]. This mode describes a
combination of a TDMA and FDMA channel access method
and aims to enable high reliability and robustness at lit-
tle energy. Nodes in a IEEE 802.15.4e network maintain a
transmission schedule. This schedule consists of timeslots
that provide a unit of bandwidth, allocated for the com-
munication to its neighbors. In order to enable predictable
transmission patterns, the allocation of these slots is config-
urable. For the rest of this paper, we will therefore focus on
IEEE 802.15.4e.

3.1.2 Complete Network Stacks

As described in subsection 2.4 a tight interaction between
upper layers and the MAC protocol is mandatory to ful-
fill the real-time requirements of the system. On the one
hand, there is a need for supportive upper layer services
like clock synchronization and scheduling algorithms, on the
other hand, routing and transport layer services also have
to be aware of the particular requirements and properties of
these MAC layer protocols. While recent research has pro-
posed some approaches to time synchronization and TDMA
scheduling algorithms, holistic approaches are rarely exam-
ined [12,13].

Recently, following the paradigm of the Internet of Things,
a trend evolved to connect all kind of machine-to-machine
systems, wired and wireless directly to the Internet [14]. The
deployment of standard IP suite protocols in these networks
is essential for this Internet connectivity. The capability of
communicating end-to-end over IP is the key for a new gen-
eration of mobile health applications, too. It allows to ex-
change data not only between the health monitoring devices
in a WBAN, but seamlessly connect to remote services in
the Internet. By this means health monitoring devices can
perform live updates of medical records or send an alarm in
life threatening situations.

However, the combination of both, deterministic MAC
layer protocols as proposed by IEEE 802.15.4e and the de-
ployment of an IP-based network stack, require some further
considerations. Since IEEE 802.15.4e only defines the link-
layer mechanisms, but not how the transmission schedule
is built and maintained to match the traffic requirements,
therefore, an upper layer service is needed. The IETF work-
ing group 6tisch is currently chartered to define such an
operation sublayer and make the IP protocol suite capable
to run on top of IEEE 802.15.4e. One of the first implemen-
tations of the entities proposed by this working group is the
OpenWSN network stack [15].

OpenWSN by default uses timeslots with duration of
15 ms. The proposed timing constants for this configura-
tion that are based on measurements range from tens of
microseconds up to a few milliseconds. The guard time, for
example, which determines how long the transceiver has to
be active, and, therefore, should kept as small as possible, is
configured to 1.3 ms. Hence, the software must guarantee a
worst-case execution time for handling an external event sig-
nificantly below this value, in order to process an incoming
packet in time.

3.2 Software Platforms
As seen in the preceding sub-section, special care has to

be taken, designing the software platform for mobile health
applications. The first design decision for the software archi-
tect is whether to build the system from scratch or choose
an existing operating system (OS). If the latter option is
chosen, one has to select between several OS designs and
architectures. The OS design has a heavy impact on crucial
properties of the system like real-time capabilities, (energy)
efficiency, reliability, and flexibility. In particular, the choice
of the OS architecture defines if and which real-time require-
ments can be fulfilled.

Traditionally, real-time critical systems were implemented
from scratch by developing a software that is especially tai-
lored to match exactly the needs of the application scenario.
Since these systems are obviously smaller and less complex
than systems based on general purpose OS’, they are easier
to verify and, therefore, make certification less expensive.
However, it is also evident that this approach is neither very
scalable nor flexible. Even the deployment of software up-
dates can become a difficult and time-consuming task. Thus,
developing and maintaining this type of specialized software
stack increases the costs. Nevertheless, the design and im-
plementation of a more flexible OS is a challenging task and
requires the systematic enforcement of programming con-
cepts.

The typical design of OS’ for constrained-node networks
(as defined in RFC 7228 [3]) is based on an event-based
programming paradigm like in Contiki or TinyOS [16].
For time-critical systems usually dedicated real-time OS’
(RTOS) like QNX are deployed [17]. Other RTOS’ like
FreeRTOS and RIOT have been designed, in order to match
the requirements of a low memory footprint and high energy
efficiency as they are typical for constrained-node networks
[18,19]. The latter ones match the requirements of memory
and energy constrained nodes by providing a small memory
footprint and using a tickless scheduler in order to spend
as much time as possible in deep sleep mode. In order
to guarantee real-time capabilities they are designed with
the following properties: (1) a priority-based, preemptive



Figure 2: An MSB-A2 node.

scheduler, (2) every kernel functionality has deterministic
runtime, i.e. for example, no standard malloc() within
the kernel, and (3) minimalistic interrupt handlers. For
the evaluation we used RIOT, since it provides multiple
network stack implementations and several useful system
libraries already built-in, where as FreeRTOS itself can be
considered rather as a thread library than a full-fledged OS.

3.3 Hardware
At this point of the analysis we are ready to define the

requirements and constraints concerning the hardware plat-
forms that can be used to develop mobile health appliances.
These definitions can be divided into two categories concern-
ing the following aspects: (1) interrupt latency and (2) clock
properties and wake-up times.

3.3.1 Interrupt Latencies

Interrupt latencies are central to mobile health appliances
regarding two features: (1) they must provide a minimal
delay between the occurrence of the event and handling of
the interrupt and (2) they must guarantee a small jitter for
this delay. Both features are important for the measurement
on the monitoring device itself, but are also of importance
to the MAC layer, in order to keep in sync with the other
nodes. The guard time in TSCH mode of IEEE 802.15.4e,
for instance, is dependent on this latency.

3.3.2 Clock Properties and Wake-Up Times

The clock frequency defines the resolution of the timers
and, therefore, the maximum accuracy of time-stamps. An-
other important characteristic is its stability, which defines
the clock drift. This property is usually influenced by tem-
perature, voltage, and age of the deployed crystal. Good
values for the usage of IEEE 802.15.4e are timer clocked by
at least a 32 kHz crystal and a rather stable drift of max-
imum 20 to 30 ppm. It is also crucial how fast the system
is able to wake up from sleep modes. For IEEE 802.15.4e
the timer should be able to wake up the micro-controller in
less than 100 microseconds from any deep sleep mode with
RAM retention.

4. EXPERIMENTAL RESULTS
In order to analyze if the requirements on the hardware

and software, we derived in section 3 can be fulfilled using
IoT hardware and a typical IoT OS, we performed some mea-
surements. For the OS, we have chosen RIOT because (i) it
has real-time properties and (ii) it supports OpenWSN and
its IEEE 802.15.4e implementation. The OpenWSN network
stack can be linked using a BSD like package system. For the
hardware, we have chosen a ScatterWeb MSB-A2, which is
based on an ARM7 micro-controller with 98 kB RAM and

512 kB ROM that speeds up to 72 MHz [20]. This type
of sensor board can be considered as a typical design for an
IoT device, in terms of the micro-controller architecture and
the available memory. The board has been developed and
used in research and teaching over the last decade at Freie
Universität Berlin. It is equipped with the widely used TI
CC1100 radio transceiver at 868 MHz and is also deployed
in the DES-Testbed [21].

For the measurements we used two different setups: (1)
In setup I we connected the GPIO pins GOUT1 and GOUT2

of the sensor boards (configured as output) with the probes
of an oscilloscope. (2) In setup II we additionally connected
the GPIO pins GTRIG of another sensor node to the GPIO
pins GIN of the first one, configured as input this time.

The properties that need to be measured are determined
both by the hardware and the OS. In section 4.1 we report on
measurements of typical IoT hardware, while in section 4.2,
we present measurements of typical IoT OS performance.

4.1 Measurement of the Hardware Properties

Figure 3: Screenshot from the oscilloscope measur-
ing the delay and jitter of the IRQ and FIQ on the
MSB-A2. Channel 1 (the upper one) triggers on the
output of GTRIG, channel 2 is raised when the ISR
is called. The left picture shows the results for the
FIQ, the right one for the normal IRQ.

With the measurements presented in this subsection we
evaluated what can be achieved in practice on the given
hardware concerning real-time constraints. The goal of these
measurements was to check if the analyzed micro-controller
can provide the necessary limits for delay and variance of in-
terrupt handling. For the first measurement we used setup I
and modified the MSB-A2, so that the GDO2 pin of the
CC1100 radio chip is connected with the capture register
of one of the micro-controller’s timers. Then we gener-
ated square-wave signal on the CC1100 with a frequency
of 1.08 MHz. The timer counted up and captured on every
rising flag of the CC1100’s GDO2 pin. Finally, the captured
values were printed over the USART. As a result we observed
a variation of 13.9 ns which is magnitudes smaller than what
is needed for IEEE 802.15.4e time-stamping. Actually, this
interval matches exactly the duration of one cycle on micro-
controller at 72 MHz and is, therefore, the best achievable
value for the jitter.

In the second measurement we examined the delay and jit-
ter between the occurrence of an interrupt causing event and
the point of time when the ARM interrupt service routine
(ISR) gets called. We performed the experiment with the
normal interrupt request (IRQ) and so called fast interrupts
(FIQ) on the ARM7. Therefore, we connected in setup I



GOUT1 to the first probe of the oscilloscope and GOUT2 to
the other probe. We then measured the time between the
two edges of the output signals to determine the interval.
For the FIQ we measured a delay of about 450 ns and ap-
proximately 9.9 µs for the normal IRQ. In both cases we
observed a randomly distributed jitter of about 90 µs and
a peridiocal jitter of 230 ns. Again, neither this amount
of delay nor the jitter are problematic for IEEE 802.15.4e
time-stamping.

Thus, we can derive that the ARM7 which powers the
MSB-A2 is in general usable for IEEE 802.15.4e. Since this
node is comparable to most IoT hardware, we can assume
that the implementation of a deterministic network stack on
these devices is feasible.

4.2 Measurement of the Software Properties
With these measurements we evaluated if the required

timings can be achieved, using a typical IoT OS, in worst
case scenarios. This is important to validate if the system
can still work correctly, i.e. fulfill the necessary deadlines,
under all circumstances. Therefore, we implemented our test
in RIOT and put the system under test under full load, by
creating a thread A that accesses a peripheral device (in our
tests, the USART) constantly in a while loop. A was created
with a priority PA whereas the main thread has priority PM

with PA > PM , so that A would run without cease, if no
other event would occur. Then we created a second thread
B with priority PB > PA, but put it immediately into sleep
state by calling thread_sleep(). Based on this setup we ran
two different tests: In the first one, using setup I, we regis-
tered an interrupt handler for one of the hardware timers,
and in the second one, using setup II, we registered an inter-
rupt handler for an external GPIO interrupt GIN . In both
cases the interrupt handler was configured to wake up B by
calling thread_wakeup(pid_of_B). B will toggle the output
GPIO pin connected to the second probe of the oscilloscope
as soon as it wakes up again.

For the first test we measured a delay between the ARM
ISR and B being awake again of 14.9 µs and jitter in mag-
nitudes of nanoseconds. Taking into account the values we
measured in the test 4.1, the maxium delay is still below
15 µs which is tolerable for time-stamping in IEEE 802.15.4e.

The second test revealed a delay between the occurrence
of the IRQ and B being awake again of 20.8 µs. Again,
this value is clearly below the values proposed in OpenWSN
as guard times. The higher delay for the GPIO interrupt
is caused by the design of RIOT’s GPIO interrupt handler,
which multiplexes all available GPIO interrupts in one han-
dler function.

In order to compare these results, we conducted the same
measurements without A. The results were almost identi-
cal (± one CPU cycle). Therefore, it can be deduced that
the response time for critical events of RIOT and the whole
system is not influenced by the load of the system, if the
priorities of the threads are set correctly.

Hence, we can conclude that both, the evaluated standard
sensor board and the OS, RIOT, are capable to guarantee
the required response times that we derived in section 3.
These results make us optimistic that the deployment of IP
over wireless networks are feasible in scenarios with hard
real-time requirements such as for mobile health applica-
tions.

5. CONCLUSION
In this paper we considered the requirements of mobile

health applications regarding real-time properties. We de-
scribed the features the network stack has to provide in order
to fulfill these demands. From that, we derived the required
response time capabilities of the software stack which in turn
depends on timings provided by the hardware. We then
measured the achievable performance with respect to basic
real-time properties, using standard IoT hardware and OS.
We conclude that it is indeed possible to fulfill the identified
requirements with this hardware and software.
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