User Engagement as Evaluation: a Ranking or a Regression Problem?

Frédéric Guillou 1, 2 Romaric Gaudel 1, 2 Jérémie Mary 1, 2 Philippe Preux 1, 2
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : In this paper, we describe the winning approach used on the RecSys Challenge 2014 which focuses on employing user en-gagement as evaluation of recommendations. On one hand, we regard the challenge as a ranking problem and apply the LambdaMART algorithm, which is a listwise model special-ized in a Learning To Rank approach. On the other hand, after noticing some specific characteristics of this challenge, we also consider it as a regression problem and use pointwise regression models such as Random Forests. We compare how these different methods can be modified or combined to improve the accuracy and robustness of our model and we draw the advantages or disadvantages of each approach.
Type de document :
Autre publication
1. Introduction 2. Recsys Challenge 2014: Data and Protocol 2.1 Data Characteristics and St.. 2014, 〈10.1145/2668067.2668073〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01077986
Contributeur : Frédéric Guillou <>
Soumis le : lundi 27 octobre 2014 - 15:37:37
Dernière modification le : jeudi 11 janvier 2018 - 06:22:13
Document(s) archivé(s) le : mercredi 28 janvier 2015 - 11:41:38

Fichier

Paper Recsys.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Frédéric Guillou, Romaric Gaudel, Jérémie Mary, Philippe Preux. User Engagement as Evaluation: a Ranking or a Regression Problem?. 1. Introduction 2. Recsys Challenge 2014: Data and Protocol 2.1 Data Characteristics and St.. 2014, 〈10.1145/2668067.2668073〉. 〈hal-01077986〉

Partager

Métriques

Consultations de la notice

211

Téléchargements de fichiers

314