
HAL Id: hal-01077986
https://inria.hal.science/hal-01077986

Submitted on 27 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User Engagement as Evaluation: a Ranking or a
Regression Problem?

Frédéric Guillou, Romaric Gaudel, Jérémie Mary, Philippe Preux

To cite this version:
Frédéric Guillou, Romaric Gaudel, Jérémie Mary, Philippe Preux. User Engagement as Evaluation: a
Ranking or a Regression Problem?. 2014, �10.1145/2668067.2668073�. �hal-01077986�

https://inria.hal.science/hal-01077986
https://hal.archives-ouvertes.fr

User Engagement as Evaluation: a Ranking or a
Regression Problem?

Frédéric Guillou
INRIA Lille - Nord Europe

frederic.guillou@inria.fr

Romaric Gaudel
University of Lille

romaric.gaudel@inria.fr

Jérémie Mary
University of Lille

jeremie.mary@inria.fr

Philippe Preux
University of Lille

philippe.preux@inria.fr

LIFL UMR CNRS 8022 & INRIA Lille - Nord Europe
40 avenue Halley 59650 Villeneuve d’Ascq, FR

ABSTRACT

In this paper, we describe the winning approach used on the
RecSys Challenge 2014 which focuses on employing user en-
gagement as evaluation of recommendations. On one hand,
we regard the challenge as a ranking problem and apply the
LambdaMART algorithm, which is a listwise model special-
ized in a Learning To Rank approach. On the other hand,
after noticing some specific characteristics of this challenge,
we also consider it as a regression problem and use pointwise
regression models such as Random Forests. We compare
how these different methods can be modified or combined
to improve the accuracy and robustness of our model and
we draw the advantages or disadvantages of each approach.

Categories and Subject Descriptors

[Information systems]: Information retrieval—Retrieval
tasks and goals; Recommender systems; [Computing me-

thodologies]: Machine learning—Learning paradigms; Su-
pervised learning; Learning to rank ; [Computing method-

ologies]: Machine learning—Machine learning approaches;
Classification and regression trees; [Computing method-

ologies]: Machine learning—Machine learning algorithms ;
Ensemble methods

Keywords

Recommender Systems; Learning to rank; LambdaMART;
Random Forests

1. INTRODUCTION
Standard approaches for recommender systems [11, 4] usu-

ally focus on predicting ratings and interests of users, and
then recommend high-scoring items. Such approaches have

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RecSys ’14 , Foster City, Silicon Valley, USA

Copyright 2014 ACM 978-1-4503-3188-3/14/10 ...$15.00.

http://dx.doi.org/10.1145/2668067.2668073.

however shown some flaws [8], as achieving a low predic-
tion error for ratings does not mean the recommended items
would match user’s taste. Compared with traditional ap-
proaches focusing on estimating ratings in the most accu-
rate way, the Learning to Rank (LTR) approach only en-
deavors to predict an accurate ranking, and is nowadays an
active topic in the field of Machine Learning due to the rapid
growth of web search engines and recommendation systems.

Given a set of query-item pairs, described by a set of input
features and a numerical score (or the rank among the other
items) indicating the relevance of each item as a response to
the given query, the LTR methods aim at learning from these
data a model that would find the most appropriate ranking
for a set of potentially unseen items for a potentially unseen
query.

The RecSys challenge [10] investigates a specific recom-
mendation task: find items with the highest user engage-
ment. Specifically, the objective is to rank a set of tweets
after the (unknown) number of time they will be favorited
or retweeted [6]. This problem comes within the scope of a
LTR problem, since each user can be considered as a query,
and each tweet associated to each user as an item. Will
regressions approaches handily win that challenge?

Our approach built for this challenge uses a combination of
several ranking models. Firstly, we apply a LambdaMART
algorithm [2], which is a listwise model for LTR, trained on
a cleared version of the train dataset. After observing the
shape of the data and noticing some specific characteristics,
we also consider the problem as a standard regression prob-
lem and investigate a way to take these characteristics into
account into our model by training Random Forests [1] on a
full dataset, modified with respect to these characteristics.
We compare several approaches to combine ranking or sim-
ple regression models and examine pros and cons of these
two approaches for this type of problem.

The rest of this paper is organized as follows. Section 2
describes the dataset and the rules of the challenge. In Sec-
tion 3, we briefly review LambdaMART method and Ran-
dom Forest and explain how we use or combine them in
our model. Our experimental protocols and results on the
challenge are then described in Section 4. We open some
discussion about the challenge and results in Section 5 and
then conclude in Section 6.

Table 1: Training data statistics

Metric Value
Tweets 170,285

Unique users 22,079
Unique items 13,618

Tweets with zero engagement 162,107 (95.2%)
Unsuccessful users 17,502 (79.27%)

1

2

3

4

5-14

15-51

185,496

Figure 1: Distribution of the user engagement of successful
tweets in the training dataset.

2. RECSYS CHALLENGE 2014: DATA AND

PROTOCOL
For this challenge, a large dataset is split chronologically

in three subsets: a training set, a test set, and an evaluation
set. The percentage for each of these subsets is respectively
around 80%, 10% and 10%. Contestants of the Recsys Chal-
lenge are provided on the training and test sets in order to
build their models and algorithms, while the evaluation set
is kept for the final evaluation in order to decide on the win-
ner of the challenge. The dataset is an extended version of
the MovieTweetings dataset [6], so data originate from users
of the IMDb app, where they can rate movies and share the
rating on Twitter. Tweets and information related to them
were collected by querying the Twitter API on a daily basis
for tweets containing the keywords ’I rated IMDb’.

As input features for each tweet, the challenge dataset
contains metadata of the tweets as provided by the Twitter
API. These metadata include information about the user,
the movie or the tweet itself. The retweets and favorites
counts were also included in the metadata, in order to eval-
uate tweets by their engagement and rank them.

2.1 Data Characteristics and Statistics
Each dataset contains tweets represented as follow: twit-

ter user id, IMDb item id, rating given by the user to the
movie, scraping timestamp, tweet data. We present in Table
1 some statistics about the training dataset. We denote a

Table 2: About retweets in the training dataset

Metric Value
Number of retweets 1,808

Percentage among successful tweets 22.10%
”Artificial” successful users 28.44%

tweet which obtains a non-zero engagement as a successful
tweet, and a user who have had at least one successful tweet
as a successful user. These statistics give us some impor-
tant information for our model which is described in Section
3. First of all, we notice the number of successful tweets
is really low, i.e. most tweets have no success and do not
get any retweet or are put as favorite by other users. As
a consequence, most users in the dataset only have tweets
with an engagement of 0. Successful tweets receive an aver-
age engagement of 4.41 but 80% of these tweets have only
a user engagement of 1 (cf. Figure 1). Overall, most of the
tweets have an engagement of either 0 or 1, which means the
challenge is almost a binary classification problem. In fact,
as shown in [9], the binary oracle, i.e. the classifier that only
gives the score 1 to tweets with positive engagement and the
score 0 to remaining tweets, gets an overall result of 0.9877
on the test set.

Secondly, part of these tweets are retweets (cf. Table 2).
The engagement of a retweeted tweet is a specific case in the
dataset, since such tweets share their retweet count with the
original tweet (but do not share their favorite count). Ev-
ery retweet necessarily has a strictly positive engagement.
Given that both the retweet and favorite counts of the orig-
inal tweet are available on the metadata, this distinctive
feature has to be taken into account in the model. These
tweets have not been originally posted by the user that we
evaluate, so the user engagement of retweets can cause a
distorted evaluation. On the 4,577 users who are considered
successful, only 3,321 have successful tweets that have been
posted by themselves, the rest of these users can be consid-
ered as ”artificial” successful users since they only received
a positive user engagement by retweeting, but not on their
own tweets.

2.2 About User Engagement as Evaluation
This challenge focuses on a different way of evaluating

models and recommendations. The goal of the algorithm is
to determine the best ranking for each user after the engage-
ment that each of his tweets receives. The user engagement
for one tweet is calculated as the sum of the number of times
it has been retweeted and the number of times it has been
marked as favorite. In order to measure the performance
of this ranking, the information retrieval measure used is
the Normalized Discounted Cumulative Gain (NDCG) [7],
computed on the top 10 elements for each user. The overall
evaluation is obtained by averaging the NDCG@10 of each
user.

However, following the previous section about character-
istics of the dataset, some details have to be mentioned con-
cerning the use of the NDCG measure. Firstly, most of the
users don’t have any successful tweet among their tweets.
For these users, any ranking of the tweets is equivalent since
all items have the same relevance. Secondly, if we restrict
ourselves to remaining users who have at least one success-
ful tweets, it is also possible that any ranking will give the

1

2

3-10

11-20

>20

Figure 2: Distribution of the number of tweets per user in
the training dataset.

maximum NDCG score. This case can happen if the user
only has one tweet in total (cf. Figure 2), or if all of his
tweets have the same positive user engagement, for example
a user with three tweets with an engagement of 1. Then
the ranking provided by the model would not have any con-
sequence on the NDCG score for this user, and the NDCG
would always be 1.0 since any ranking would be considered
perfect.

Overall, 2,792 users provide a clean ranking (after removal
of the retweet effect). While these users represent only 13%
of the total number of users, they still gather 44% of the
whole tweets, and 8% of their tweets are true successful
tweets.

2.3 Input Features for the Model
We use several features that seem relevant to predict the

ranking or the user engagement of a tweet. Each of these
features is contained in the dataset or is extracted separately
to enhance the model. Each of these features enters into one
of three categories: user features, movie features, and tweet
features.

User features are given in the original dataset. These fea-
tures include the number of followers, the number of friends,
the number of tweet put as favorites, the number of statuses
posted and the number of lists in which the user is included.
User features can change through time, since a user might
follow more people or get more followers, and feature values
for each tweet are the one extracted at the exact time the
tweet was posted.

As for the movie features, we extract some features from
IMDb website such as the IMDb rating, the IMDb votes,
the budget of the movie or its release date. Since people
constantly rate movies on IMDb, the IMDb rating or the
number of votes keeps changing, and the values taken in
our model are the one available at the time we extracted
it. However, they are still significant in that these values
provide the model a way to distinguish between popular or

unpopular movies, as well as between acclaimed or criticized
movies.

Finally, we include also the features that are related to the
tweet itself, such as the rating given to movie by the user, the
date the tweet was posted, the time difference between the
release date of the movie and the post of the tweet, or other
information about hashtags, lang, retweet, image inside the
tweet...

3. METHOD
After a brief description of each method used, we discuss

how to combine different rankers, and then explain our ap-
proach.

3.1 LambdaMART Model
LambdaMART [2] uses a listwise approach: it considers

the whole lists of items as instances in learning, and tries to
optimize directly a performance measure.
LambdaMART has been created by combining two previous
algorithms, MART and LambdaRank. MART is a pointwise
approach based on a boosted tree model in which the output
of the model is a linear combination of the output of a set of
regression trees. It can be viewed as performing gradient de-
scent in function space using regression trees. LambdaRank
is a method based on neural networks, which expresses gra-
dients based on the ranks of the documents, and modifies
the weight in the neural net according to these gradients.
The λ terms in LambdaRank can be seen as rules defining
how to change the ranks of items in a ranked list in order
to optimize the performance. Gradients of costs to optimize
directly a performance measure are hard to compute since
these measure are non-differentiable. Instead, the λ terms
are considered to be gradients with contributions from all
other items that have a different relevance label. Lamb-
daMART combines both approaches by using the idea of λ
terms from LambdaRank and MART’s boosted regression
trees. LambdaMART models have shown great efficiency in
ranking problems and won the Yahoo! Learning to Rank
Challenge [3].

3.2 Random Forests
Random Forest [1] is a kind of ensemble learning algo-

rithm which combines predictions from an ensemble of ran-
dom trees. Bagging is used to reduce the correlation be-
tween each pair of random trees in the ensemble. Compared
to LambdaMART, the Random Forest method belongs to
pointwise methods as it is a regression model. Each of the
trees in the ensemble forest votes for the output value, and
the predicted output is then determined by all the trees in
the ensemble. This method has demonstrate high perfor-
mance and has been applied successfully in various different
fields, including LTR competitions [5].

3.3 Description of the Approach
Here we describe the models we use in our overall ap-

proach, and how we combined them. At first we built a
LambdaMART model on a modified train dataset, in which
we removed users who would have the same NDCG with-
out regard to the ranking given by the algorithm. As a
consequence, the training dataset for LambdaMART is very
small. We tried to artificially augment the dataset as showed
in [3] by sampling some percentage of tweets for each user
and inserting these data in the training set. For example,

instead of learning the ordering A>B>C for three tweets,
sampling from these tweets and removing B help the model
not to overfit and manage to learn that A>C without the
condition of B lying between them. However, training on
augmented models did not show any improvement on the
evaluation. This is due to the characteristics of the data
where only very few tweets, are successful for a given user,
i.e. in most cases, the ranking problem is reduced to iden-
tify that one or two tweets will generate higher engagement
than other tweets. These characteristics are highlighted by
the almost perfect score of the binary oracle.

Such result encourages to also consider simpler algorithms,
such as regression models. In Section 4 we present the results
obtained with Linear Regression, and with Random Forests.
One advantage of regression models is that they allow to
easily correct the effect of retweeted tweets: (i) remove the
retweet count of the original tweet from the features, (ii)
while learning the model, modify the user engagement by
subtracting the retweet count of the original tweet, and (iii)
add the retweet count of the original tweet to the result
returned by the learned model. In other words, the user
engagement of any tweet that was not originally posted by
the user, is reduced to its ”true” user engagement, by drop-
ping the retweet count that actually belongs to the user who
posted the original tweet. At the contrary, the effect of such
cleaning is less clear while using LambdaMART. In fact,
LambdaMART model returns a value that does not target
the engagement score as it focuses on the ranking of tweets.
Hence, adding the retweet count of the original tweet to that
value is meaningless.

Finally, we also explore various ways to combine these
models. It is usually not an easy task to decide which
method to keep in the final model if several methods per-
form similarly well, and combining rankers can be a way to
minimize the chance of achieving poor results on an eventual
new test dataset, because the diversification of methods will
provide more robustness to the final model. Since the values
returned by LambdaMART and regression models are not
at the same scale, we standardize both predictions. After
this step, the combination of rankers can be done in vari-
ous ways. We apply both a simple averaging method, and a
method to perform an optimal linear combination of rankers
described in [12]. Given a pair of rankers who respectively
gave the score si1 and si2 for a item i, the idea is to combined
them convexly as:

s
i

comb = αs
i

1 + (1− α)si2 (1)

where a parameter α is sweeping from 0 to 1. By enumer-
ating all values of α for which the NDCG will change, it is
possible to identify the value of this parameter for which the
two rankers are linearly optimally combined.

4. EXPERIMENTS
In this section we partially answer two questions:

• While the challenge is a Learn To Rank problem, should
we learn a ranking model or not?

• Is there an efficient way to combine ranking models
with other models?

These questions are answered in the light of the results
obtained on the data of the challenge. We consider both
(i) the NDCG score obtained by the models discussed in

Table 3: NDCG@10 on test dataset

Model NDCG@10

Retweet 0.806
λ-MART 0.838

RF / WrapRF 0.823 / 0.858
Lin / WrapLin 0.806 / 0.843

Mean(λ-MART, Retweet) 0.876
Mean(λ-MART, WrapRF, WrapLin) 0.874

OptAvg(λ-MART, WrapRF, WrapLin) 0.876
OptAvg(λ-MART, RF, Retweet) 0.878

the paper and (ii) the importance of features in the learned
forests.

Hyper-parameters of simple models are selected through
10-fold cross-validation on the training dataset, with NDCG
as objective function. These parameters include the number
of trees, the number of leaves in each tree, and the learning
rate of LambdaMART. Parameters found were 500 for the
number of trees, 10 for the number of leaves and a learning
rate of 0.05. We chose for Random Forest algorithm to use
2000 trees with a maximum depth of 5.

4.1 Experimental Results
While this strategy is subject to overfitting, models are

compared after their NDCG@10 score on the test set. Re-
sults are given in Table 3 where λ-MART, RF and Lin stand
respectively for LambdaMART, Random Forest and linear
regression. Retweet is the model which predicts as a score
the number of retweets of the original tweet (0, when the
tweet is an original one, not a retweet).

The suffix Wrap indicates that the corresponding regres-
sion model is used on dataset for which retweet effect has
been cleaned. Specifically, during the training phase, the
number of retweets of the original tweet is removed from
the features and is subtracted to the user engagement. Dur-
ing the test phase, this number is added to the engagement
predicted by the learned model.

Finally, Mean stands for the meta-model which uses the
average predicted score to rank tweets, and OptAvg stands
for the meta-model using the best linear combination1. No-
tice that these best linear combinations are selected after
the NDCG@10 score on the test set.

The first remark on the results is the importance of the
retweet score. For example, this score alone is enough to
reach an NDCG of 0.806. Similarly, the combination of
Retweet with other models (through linear combination or
wrapping) increases the NDCG score of these models to the
extent of 0.035. Finally, any of the best models uses the
retweet score.

The second important remark is that a ranking model is
also needed to achieve the best NDCG score. LambdaMART
is used by any model with an NDCG greater than 0.87, and
the simple solution Mean(λ-MART, Retweet) has almost the
best NDCG score. However, the wrapping strategy allows
regression models to outclass LambdaMART. This suggests
that ranking model are more promising as soon as the data
are cleaned from the retweet effect.

1The best linear combinations are
0.48×λ-MART + 0.08×WrapRF + 0.44×WrapLin and
0.3×λ-MART + 0.12×RF + 0.58×Retweet

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha
 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

beta

 0.83

 0.85

 0.87

 0.89

 0.835

 0.84

 0.845

 0.85

 0.855

 0.86

 0.865

 0.87

 0.875

 0.88

Figure 3: Test NDCG@10 after the linear combination of
LambdaMART, WrapRF and WrapLin. Their weight is re-
spectively α, β and 1− α− β.

Notice also that the linear combination of simple models
works surprisingly well. LambdaMART is a ranking model,
but it is based on a boosted Forest which predicts the incli-
nation for tweet to have a better score than an other one.
Then, LambdaMART mixes well with Random Forests or
with Retweet.

Finally, Figure 3 gives the NDCG after the linear combi-
nation of LambdaMART, WrapRF and WrapLin. We ob-
serve a large plateau of NDCG around the arithmetic mean.
Moreover, the careful selection of the linear combination of
simple models only increases the NDCG to an extent of a
few thousandth. This tiny increase in NDCG, and the large
plateau of equivalent linear combination indicates that the
arithmetic mean is a safer approach. A similar analysis of
OptAvg(λ-MART, RF, Retweet) leads to the same conclu-
sion.

4.2 Relevant Features
The relevance of features has been measured on different

sets of Random Forests to observe which effect has the re-
moval of one or several features. In order to measure the
relevance, we can use the relative depth at which the fea-
ture appears in a tree. A feature which appears at the top is
contributing more to the final prediction as there is a larger
fraction of input samples going through this node. The esti-
mate used to measure the importance of a feature is thus the
expected fraction of the samples to which this feature will
contribute. Figure 4a presents the feature relevance on orig-
inal data: we keep all input features, including the retweet
count of the original tweet, and we do not modify the user
engagement of the tweet. We notice in this case the features
related to the original tweet, such as the number of favorites
or retweet of the original tweet are the features contributing
the most to the prediction. This contribution again high-
lights the importance of the original retweet count to build
a efficient model.

Figure 4b exhibits the feature relevance on data cleaned
from the retweet effect: the retweet count of the original
tweet is removed from input features and user engagement
is modified as mentioned previously. We observe that after
removal of the retweet effect, the Random Forest makes a

0.0 0.1 0.2 0.3 0.4 0.5 0.6

created_at

release_date

votes

rating

lang_ar

retweeted_status

followers_count

listed_count

retweeted_retweet

retweeted_fav

(a) Relevance of features using all features and unmodified user
engagement.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

created_at

time_tweet_scrap

user_mentions

friends_count

media

rating

lang_ar

favourites_count

listed_count

followers_count

(b) Relevance of features after cleaning the retweet effect.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

votes

lang_fa

time_tweet_scrap

budget

user_mentions

media

release_date

time_tweet_movierelease

lang_ar

rating

(c) Relevance of features after cleaning the retweet effect and
removing user features.

Figure 4: Relevance of features.

prediction about the user engagement mostly based on user
features, such as the number of followers, the number of
favorites, or the number of lists in which the user is. A
user who has a higher number of followers or is included in
more lists is more likely to receive higher engagement on his
tweets. However, focusing mostly on user features sounds
inappropriate for the challenge, as the tweets to rank are
always emitted by the same user. While comparing two
tweets, the only difference in user properties comes from the
fact that both tweets were not emitted at the same date.

In the last case (cf. Figure 4c), we evaluate the impor-
tance of all features except user features. Since the NDCG
score is computed for each user and user features seem not
to change a lot throughout time, it would be interesting to
observe which movie or tweet features are influencing the re-
gression prediction. Remark that the most relevant features
sound reasonable: the rating given by the user in the tweet,
one language feature (arabic), the time passed between the
release of the movie and the tweet post, the date at which
the movie was released.

5. DISCUSSIONS
We discuss on this section some important remarks about

the dataset. Several temporal aspects can influence the
model prediction and evaluation. Firstly, the time inter-
val from which the tweets have been posted for both the
train set and the test/evaluation set are strongly different,
since the train set contains tweets posted over a period of 10
months while the two others contains only a time interval
of approximately one month. This leads to some questions
about the effects of some features. For example, a user has
more chance throughout a long period of time to gather
new followers who could bring potentially a higher engage-
ment on his future tweets. We observed during the study
of relevant features that user features were bringing a lot of
information to the Random Forest, and such difference of
time interval between the datasets can have a large impact
on the prediction.

Moreover, if we look at movies corresponding to tweets
with the highest engagement, we mostly find popular movies
which have been released recently at the time the tweet was
extracted. Taking a small interval of time for a dataset can
also modify the structure of data on this part since popular
movies are often released at a specific period of time during
the year. Regarding how the different datasets have been
built, such information cannot be taken into account.

A sequential approach of Twitter problems would proba-
bly be more appropriate since both the evolution of a user
or the release of movies can be seen as sequential problems.

6. CONCLUSIONS
Recommendation problems are learn to rank problems:

you have to identify the best items. However, the great-
est part of recommendation systems aim at predicting the
importance of each item, which corresponds to a regression
problem. The current challenge gives us the opportunity to
build a recommendation system which directly identifies the
best items.

Our analysis on that challenge leads to two main conclu-
sions. Firstly, the best approach builds upon a ranking strat-
egy: LambdaMART. However LambdaMART only reaches
its full potential after the removal of the retweet effect. Sec-

ondly, LambdaMART and Random Forest are close enough
to be combined through linear regression.

Given the high success and potential of Twitter or IMDb,
it is surprising to work with so few relevant tweets on the
dataset (tweets that have been retweeted or put as favorite
at least one time). If we leave aside the retweet effect, the
scarcity of original successful tweets makes it difficult to be
certain about the robustness of any approach on this dataset.
We hope that the end of the challenge will allow to build a
bigger dataset, from which a deeper analysis could be done.

7. ACKNOWLEDGMENTS
This work was supported by Ministry of Higher Edu-

cation and Research, Nord-Pas-de-Calais Regional Coun-
cil, FEDER through the Contrat de Projets Etat Region
(CPER) 2007-2013, and Hermes project of the Pôle de com-
pétitivité PICOM.

8. REFERENCES
[1] L. Breiman. Random forests. Machine learning,

45(1):5–32, 2001.

[2] C. J. Burges. From ranknet to lambdarank to
lambdamart: An overview. Learning, 11:23–581, 2010.

[3] C. J. Burges, K. M. Svore, P. N. Bennett,
A. Pastusiak, and Q. Wu. Learning to rank using an
ensemble of lambda-gradient models. In Yahoo!
Learning to Rank Challenge, pages 25–35, 2011.

[4] J. Cai, E. Candès, and Z. Shen. A singular value
thresholding algorithm for matrix completion. SIAM
Journal on Optimization, 20(4):1956–1982, 2010.

[5] O. Chapelle and Y. Chang. Yahoo! learning to rank
challenge overview. In Yahoo! Learning to Rank
Challenge, pages 1–24, 2011.

[6] S. Dooms, T. De Pessemier, and L. Martens.
Movietweetings: a movie rating dataset collected from
twitter. In Workshop on Crowdsourcing and Human
Computation for Recommender Systems, CrowdRec at
RecSys, volume 2013, 2013.

[7] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on
Information Systems (TOIS), 20(4):422–446, 2002.

[8] A. Karatzoglou, L. Baltrunas, and Y. Shi. Learning to
rank for recommender systems. In Proceedings of the
7th ACM Conference on Recommender Systems,
RecSys ’13, pages 493–494, New York, NY, USA,
2013. ACM.

[9] D. Loiacono, A. Lommatzsch, and R. Turrin. Recsys
challenge 2014: Learning to rank. 2014.

[10] A. Said, S. Dooms, B. Loni, and D. Tikk.
Recommender systems challenge 2014. In Proceedings
of the eighth ACM conference on Recommender
systems, RecSys ’14, New York, NY, USA, 2014.
ACM.

[11] G. Takács and D. Tikk. Alternating least squares for
personalized ranking. In Proceedings of the sixth ACM
conference on Recommender systems, RecSys ’12,
pages 83–90, New York, NY, USA, 2012. ACM.

[12] Q. Wu, C. J. Burges, K. M. Svore, and J. Gao.
Adapting boosting for information retrieval measures.
Information Retrieval, 13(3):254–270, 2010.

