Handling noise in image deconvolution with local/non-local priors

Abstract : Non-blind deconvolution consists in recovering a sharp latent image from a blurred image with a known kernel. Decon-volved images usually contain unpleasant artifacts due to the ill-posedness of the problem even when the kernel is known. Making use of natural sparse priors has shown to reduce ring-ing artifacts but handling noise remains limited. On the other hand, non-local priors have shown to give the best results in image denoising. We propose in this paper to combine both local and non-local priors to handle noise. We show that the blur increases the self-similarity within an image and thus makes non-local priors a good choice for denoising blurred images. However, denoising introduces outliers which are not Gaussian and should be well modeled. Experiments show that our method produces a better image reconstruction both visually and empirically compared to methods some popular methods.
Type de document :
Communication dans un congrès
IEEE International Conference on Image Processing (ICIP), Oct 2014, Paris, France. 〈http://icip2014.wp.mines-telecom.fr〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01078693
Contributeur : H. Yahia <>
Soumis le : mercredi 29 octobre 2014 - 18:47:47
Dernière modification le : mercredi 3 janvier 2018 - 14:18:08
Document(s) archivé(s) le : vendredi 30 janvier 2015 - 10:42:33

Fichier

Handling Noise in Image Deconv...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01078693, version 1

Collections

Citation

Hicham Badri, Hussein Yahia. Handling noise in image deconvolution with local/non-local priors. IEEE International Conference on Image Processing (ICIP), Oct 2014, Paris, France. 〈http://icip2014.wp.mines-telecom.fr〉. 〈hal-01078693〉

Partager

Métriques

Consultations de la notice

277

Téléchargements de fichiers

267